
Open Source Frameworks for Rapid Application
Development

Marek Krętowski
Krzysztof Bandurski, Tomasz Łukaszuk, Tomasz Rybak

Software Departament
Faculty of Computer Science

Bialystok University of Technology

m.kretowski@pb.edu.pl
k.bandurski@pb.edu.pl, t.lukaszuk@pb.edu.pl, t.rybak@pb.edu.pl

Lecture topic
Object-Relational Mapping, Models

MK, KB, TŁ, TR (BUT) OSFforRAD 1 / 53

Object-Relational Mapping, Models: Table of content

1 ORM - Introduction

2 Models and ORM in Django

3 Models and ORM in Ruby on Rails

MK, KB, TŁ, TR (BUT) OSFforRAD 2 / 53

ORM - Introduction

What is ORM?

ORM - object-relational mapping
a programming technique for converting data between
incompatible type systems in object-oriented programming
languages
this creates, in effect, a "virtual object database" that can be used
from within the programming language
both free and commercial packages available that perform
object-relational mapping
some programmers opt to create their own ORM tools

MK, KB, TŁ, TR (BUT) OSFforRAD 3 / 53

ORM - Introduction

Database vs. Programing language

Database:
relational model of data
data is stored in tables, with
relations and constraints
quite limited set of operations
on data

Programing language:
object-oriented model of data
classes and objects,
inheritance and aggregation
a wide range of operations

MK, KB, TŁ, TR (BUT) OSFforRAD 4 / 53

ORM - Introduction

Database-Application cooperation

First way of cooperation:
to load data from database into arrays and use it locally
this is simulation of database inside the program
used in ADO and ADO.NET
introduces problems with conflicts between internal state and what
is stored in database

Second way of cooperation:
to allow for programmer to directly manipulate database using
SQL
used in JDBC, ODBC
forces programmer to think in two modes — object-oriented
(including exception) and relational, which uses transactions

MK, KB, TŁ, TR (BUT) OSFforRAD 5 / 53

ORM - Introduction

Object-Relational Mapping

There is need to join those two models: object oriented and
relational
There was (and still is) promise (never fully delivered) of
object-oriented databases
Meanwhile Object-Relational Mapping (ORM) was introduced
Its purpose is to map objects to database and database to objects
with as little code as possible
Class represents table
Object represents row in table
Field (or property) represents column

MK, KB, TŁ, TR (BUT) OSFforRAD 6 / 53

ORM - Introduction

Examples of ORM software

Hibernate (Java)
NHibernate, LINQ, Entity Framework (.NET)
Kohana (PHP)
SQLAlchemy (Python)
...

MK, KB, TŁ, TR (BUT) OSFforRAD 7 / 53

ORM - Introduction

Data types mapping

Databases use different data types than programming languages
Programming languages use types that are close to hardware
Databases, as more suited for business needs, have types that
can be closer to problem domain
Need to map types from database to the language

OO type DBMS type
float numeric, float

string varchar, text
array -

array of bytes blob, bytea
object implementing functionality timestamp

MK, KB, TŁ, TR (BUT) OSFforRAD 8 / 53

ORM - Introduction

Some discussion

Do we put business logic to application or database?
If in database — it is consistent, but requires more powerful
hardware
It requires writing logic in SQL or other language understood by
DBMS
In case of applications — there can be many programs accessing
database
But programmers know better OO languages than SQL
On the other hand databases live much longer than single
applications
Database and data with them stay, programs that operate on the
data come and go

MK, KB, TŁ, TR (BUT) OSFforRAD 9 / 53

ORM - Introduction

Types of Object/Relational mappers

In general, ORM is interface to the database
The simplest ones are not really mappers, but just ease writing
queries for accessing data
The more sophisticated add abstractions so programmer never
sees SQL
Some ORM tools do not allow for accessing database “behind
their back”
ORM must not assume that it is the only entity accessing data
stored in DBMS
Objects that are created to represent data can have “behaviour”
They can contain code that is responsible for managing data
E.g. checking constraints, formatting data
But this is not always the case
Domain objects vs. data structures

MK, KB, TŁ, TR (BUT) OSFforRAD 10 / 53

ORM - Introduction

Source model

Which model to start with
No problem if we already have existing schema and need to write
application that uses it
Programmers tend to start with classes
Administrators (including DBAs) tend to start with database
schema
ORM usually transforms class hierarchy to database schema
If we create objects based on the schema, we make it hard to
change schema, as hierarchy of objects is mirror of the schema
When schema is generated by ORM tool from objects, it is tuned
to needs of those objects
This may mean that schema is only useful for other needs
Tables may be denormalised

MK, KB, TŁ, TR (BUT) OSFforRAD 11 / 53

ORM - Introduction

Knowledge of mechanisms used in database

ORM is leaky abstraction
ORM can be used to hide enormous schema
But programmers should know what seats under the hood
This is important for them to avoid code that has bad performance
implications
Lazy vs. eager fetching of objects
Depth of graph of objects/tables that are fetched

MK, KB, TŁ, TR (BUT) OSFforRAD 12 / 53

ORM - Introduction

Advantages and disadvantages of ORM

Advantages:
ORM often reduces the
amount of code that needs to
be written
the ability to change the
database system without
changing the application code

Disadvantages:
negative effect on
performance
ORM software has been
pointed to as a major factor in
producing poorly designed
databases
not perform well during bulk
deletions of data or joins

MK, KB, TŁ, TR (BUT) OSFforRAD 13 / 53

Models and ORM in Django

Database access in Django

Django is database driven application framework
It can use MySQL, SQLite, PostgreSQL, Oracle databases
To avoid problems with the connections, programmer should not
use the own connections but rather rely on ones provided by
framework
It presents database as collection of objects
Each collection has methods to fetch objects (rows), filter them,
get them in appropriate order, etc.

MK, KB, TŁ, TR (BUT) OSFforRAD 14 / 53

Models and ORM in Django

Models

Generally, each model maps to a single database table
Each model is a Python class that subclasses
django.db.models.Model

Each attribute of the model represents a database field
Django gives you an automatically-generated database-access
API

Quick example:
1 from django.db import models
2

3 class Person(models.Model):
4 first_name = models.CharField(max_length=30)
5 last_name = models.CharField(max_length=30)

MK, KB, TŁ, TR (BUT) OSFforRAD 15 / 53

Models and ORM in Django

Django model vs. database table

Django model:
1 from django.db import models
2

3 class Person(models.Model):
4 first_name = models.CharField(max_length=30)
5 last_name = models.CharField(max_length=30)

Create a database table SQL code:
1 CREATE TABLE myapp_person (
2 "id" serial NOT NULL PRIMARY KEY,
3 "first_name" varchar(30) NOT NULL,
4 "last_name" varchar(30) NOT NULL
5);

MK, KB, TŁ, TR (BUT) OSFforRAD 16 / 53

Models and ORM in Django

Fields

The most important part of a model
... and the only required part of a model
List of database fields
Fields are specified by class attributes

1 class Musician(models.Model):
2 first_name = models.CharField(max_length=50)
3 last_name = models.CharField(max_length=50)
4 instrument = models.CharField(max_length=100)
5

6 class Album(models.Model):
7 artist = models.ForeignKey(Musician)
8 name = models.CharField(max_length=100)
9 release_date = models.DateField()

10 num_stars = models.IntegerField()

MK, KB, TŁ, TR (BUT) OSFforRAD 17 / 53

Models and ORM in Django

Field types

Field should be an instance of the appropriate Field class
Field class type determine: the database column type, the widget
to use in Django’s admin interface, the minimal validation
requirements
Django ships with dozens of built-in field types

MK, KB, TŁ, TR (BUT) OSFforRAD 18 / 53

Models and ORM in Django

Type of fields

IntegerField
AutoField IntegerField that generates its values; usually for

declaring primary keys; implemented using sequences or
SERIAL

FloatField
BooleanField

CharField
TextField

EmailField TextField that checks if it contains email
URLField TextField that stores URL
XMLField TextField containing XML

PhoneNumberField
IPAddressField
DateTimeField also DateField and TimeField
FilePathField

FileField
ImageFieldMK, KB, TŁ, TR (BUT) OSFforRAD 19 / 53

Models and ORM in Django

Field options

They are given as named parameters to field object constructor.
null boolean, whether field can contain NULL

blank boolean, whether field can be blank
choices collection of possible values to be stored in this field

db_column name of column field is stored in
db_index boolean, whether there should be index for this column in

database
editable boolean, points if field can be edited

help_text description that is displayed in admin module
primary_key boolean, true if field is primary key in the table; usually

used for AutoField
unique

verbose_name

MK, KB, TŁ, TR (BUT) OSFforRAD 20 / 53

Models and ORM in Django

Choises field

1 from django.db import models
2

3 class Person(models.Model):
4 GENDER_CHOICES = (
5 (u’M’, u’Male’),
6 (u’F’, u’Female’),
7)
8 name = models.CharField(max_length=60)
9 gender = models.CharField(max_length=2, choices=GENDER_CHOICES)

MK, KB, TŁ, TR (BUT) OSFforRAD 21 / 53

Models and ORM in Django

Many-to-one relationships

django.db.models.ForeignKey

1 class Manufacturer(models.Model):
2 # ...
3

4 class Car(models.Model):
5 manufacturer = models.ForeignKey(Manufacturer)
6 # ...

MK, KB, TŁ, TR (BUT) OSFforRAD 22 / 53

Models and ORM in Django

Many-to-many relationships

django.db.models.ManyToManyField

1 class Topping(models.Model):
2 # ...
3

4 class Pizza(models.Model):
5 # ...
6 toppings = models.ManyToManyField(Topping)

1 class Person(models.Model):
2 ...
3

4 class Group(models.Model):
5 members = models.ManyToManyField(Person, through=’Membership’)
6

7 class Membership(models.Model):
8 person = models.ForeignKey(Person)
9 group = models.ForeignKey(Group)

10 ...

MK, KB, TŁ, TR (BUT) OSFforRAD 23 / 53

Models and ORM in Django

One-to-one relationships

django.db.models.OneToOneField
This is most useful on the primary key of an object when that object
"extends" another object in some way.
1 class Place(models.Model):
2 ...
3

4 class Restaurant(models.Model):
5 place = models.OneToOneField(Place, primary_key=True)
6 ...

MK, KB, TŁ, TR (BUT) OSFforRAD 24 / 53

Models and ORM in Django

Model metadata

Model metadata is "anything that’s not a field", such as ordering
options (ordering), database table name (db_table), or
human-readable singular and plural names (verbose_name and
verbose_name_plural).
1 class Ox(models.Model):
2 horn_length = models.IntegerField()
3

4 class Meta:
5 ordering = ["horn_length"]
6 verbose_name_plural = "oxen"

MK, KB, TŁ, TR (BUT) OSFforRAD 25 / 53

Models and ORM in Django

Model methods

Custom methods on a model add custom "row-level" functionality to
objects.
This is a valuable technique for keeping business logic in one place –
the model.
1 from django.contrib.localflavor.us.models import USStateField
2

3 class Person(models.Model):
4 first_name = models.CharField(max_length=50)
5 last_name = models.CharField(max_length=50)
6 birth_date = models.DateField()
7 address = models.CharField(max_length=100)
8 city = models.CharField(max_length=50)
9 state = USStateField()

10

11 def is_midwestern(self):
12 "Returns True if this person is from the Midwest."
13 return self.state in (’IL’, ’WI’, ’MI’, ’IN’, ’OH’, ’IA’, ’MO’)
14

15 def _get_full_name(self):
16 "Returns the person’s full name."
17 return ’%s %s’ % (self.first_name, self.last_name)
18 full_name = property(_get_full_name)

MK, KB, TŁ, TR (BUT) OSFforRAD 26 / 53

Models and ORM in Django

Methods automatically given to each model

__str__ - a Python "magic method" that defines what should be
returned if you call str() on the object
__unicode__ - method is called whenever you call unicode() on
an object
get_absolute_url - method to tell Django how to calculate the URL
for an object

1 class Person(models.Model):
2 first_name = models.CharField(max_length=50)
3 last_name = models.CharField(max_length=50)
4

5 def __str__(self):
6 return smart_str(’%s %s’ % (self.first_name, self.last_name))
7

8 def __unicode__(self):
9 return u’%s %s’ % (self.first_name, self.last_name)

10

11 def get_absolute_url(self):
12 return "/people/%i/" % self.id

MK, KB, TŁ, TR (BUT) OSFforRAD 27 / 53

Models and ORM in Django

Making queries (intro)

1 class Blog(models.Model):
2 name = models.CharField(max_length=100)
3 tagline = models.TextField()
4 def __unicode__(self):
5 return self.name
6

7 class Author(models.Model):
8 name = models.CharField(max_length=50)
9 email = models.EmailField()

10 def __unicode__(self):
11 return self.name
12

13 class Entry(models.Model):
14 blog = models.ForeignKey(Blog)
15 headline = models.CharField(max_length=255)
16 body_text = models.TextField()
17 pub_date = models.DateTimeField()
18 mod_date = models.DateTimeField()
19 authors = models.ManyToManyField(Author)
20 n_comments = models.IntegerField()
21 n_pingbacks = models.IntegerField()
22 rating = models.IntegerField()
23 def __unicode__(self):
24 return self.headline

MK, KB, TŁ, TR (BUT) OSFforRAD 28 / 53

Models and ORM in Django

Making queries I

Creating objects

1 b = Blog(name=’Beatles Blog’, tagline=’All the latest Beatles news.’)
2 b.save()

Saving changes to objects

1 b5.name = ’New name’
2 b5.save()
3

4 entry = Entry.objects.get(pk=1)
5 cheese_blog = Blog.objects.get(name="Cheddar Talk")
6 entry.blog = cheese_blog
7 entry.save()

Retrieving objects

MK, KB, TŁ, TR (BUT) OSFforRAD 29 / 53

Models and ORM in Django

Making queries II

1 all_entries = Entry.objects.all()
2

3 Entry.objects.filter(pub_date__year=2006)
4

5 Entry.objects.exclude(pub_date__gte=datetime.now())
6

7 one_entry = Entry.objects.get(pk=1)

Comparing objects
1 some_entry == other_entry
2 some_entry.id == other_entry.id

Deleting objects
1 e.delete()
2

3 Entry.objects.filter(pub_date__year=2005).delete()

MK, KB, TŁ, TR (BUT) OSFforRAD 30 / 53

Models and ORM in Django

Making queries III

Updating multiple objects at once

1 Entry.objects.filter(pub_date__year=2007).update(headline=’the same’)

MK, KB, TŁ, TR (BUT) OSFforRAD 31 / 53

Models and ORM in Django

Retrieving objects - Methods returning collection of
objects

all returns all objects
filter returns objects matching given condition

exclude returns objects that do not match given condition
distinct returns set (not collection) of objects; adds “DISTINCT” to

SELECT clause
order_by sorts returned object with regard to given fields

values instead of objects returns collection of dictionaries; one
dictionary represents one row from database

extra allows to add part of literal SQL to generated query

MK, KB, TŁ, TR (BUT) OSFforRAD 32 / 53

Models and ORM in Django

Retrieving objects - Methods that do not return
collection

get returns exactly one object; if conditions cause return of
zero or more than one objects exception is raised

get_or_create creates object if it does not exist; then return one
object, that either existed before or was just created

create creates object; can be used instead of constructor
count returns number of objects matching given condition

in_bulk gets collection of primary keys and returns dictionary with
given values as keys and objects as values

latest accepts column name (of time-related type) and returns
last objects according to given column

MK, KB, TŁ, TR (BUT) OSFforRAD 33 / 53

Models and ORM in Django

Retrieving objects - Field lookup

exact value must be equal; this is implied condition if none is
provided

iexact case-insensitive comparison
contains given value is part of field’s value
icontains case insensitive “contains”

gt, gte, lt, lte arithmetical comparisons
in accepts collection and ensures that values come from this

collection
startswith, istartswith
endswith, iendswith

range accepts pair and ensures that values are between given
values

isnull boolean, checks whether value is or is not NULL
pk comparison to primary key

MK, KB, TŁ, TR (BUT) OSFforRAD 34 / 53

Models and ORM in Django

Source of models

In Django classes are primary source of models
There is possibility to read schema from database but it is not
recommended

It is rather slow process
It ties Django application to particular database
Relational model cannot provide all details classes need

By convention tables in database are given name
“application_class”
If our class does not contain primary key, Django will create
column named “id”
By design all primary keys must consist of single column
This is restriction imposed on relational models

MK, KB, TŁ, TR (BUT) OSFforRAD 35 / 53

Models and ORM in Django

Managing database

By using command manage.py with appropriate options:
dbshell opens command-line shell to database
validate checks correctness of declarations of models

sqlall prints SQL to create all objects (tables, indices, custom
objects)

sql prints SQL to create tables
sqlcustom prints SQL needed to customize tables

sqlclear prints SQL to drop all objects
sqlflush prints SQL that is required so database returns to initial

state, just after application creation
sqlreset prints SQL that drops and then creates objects in

database
syncdb checks which database objects exist and creates those

that are defined but do not exist yet
cleanup removes old data from database (old sessions, etc.)

dumpdata outputs content of the database
MK, KB, TŁ, TR (BUT) OSFforRAD 36 / 53

Models and ORM in Ruby on Rails

Database access in RoR

ActiveRecord manages persistence of objects
http://rubyforge.org/projects/activerecord/
Class inheriting from ActiveRecord are mapped to relational
database
Based on Active Record Pattern
http://en.wikipedia.org/wiki/Active_record_pattern
ActiveRecord constructor accepts hash of names of fields and
their values

MK, KB, TŁ, TR (BUT) OSFforRAD 37 / 53

http://rubyforge.org/projects/activerecord/
http://en.wikipedia.org/wiki/Active_record_pattern

Models and ORM in Ruby on Rails

Rails Database Migrations

Migrations are a convenient way for you to alter your database in a
structured and organized manner.
Active Record tracks which migrations have already been run.
Migrations using Ruby.
Migrations are database independent.
A migration is a subclass of ActiveRecord::Migration that
implements two class methods: up (perform the required
transformations) and down (revert them).

MK, KB, TŁ, TR (BUT) OSFforRAD 38 / 53

Models and ORM in Ruby on Rails

Anatomy of a Migration

1 class CreateProducts < ActiveRecord::Migration
2 def self.up
3 create_table :products do |t|
4 t.string :name
5 t.text :description
6

7 t.timestamps
8 end
9 end

10

11 def self.down
12 drop_table :products
13 end
14 end

Active Record provides methods that perform common data definition
tasksin a database independent way.
create_table, change_table, drop_table, add_column,
change_column, rename_column, remove_column, add_index,
remove_index

MK, KB, TŁ, TR (BUT) OSFforRAD 39 / 53

Models and ORM in Ruby on Rails

Model class

1 class Person < ActiveRecord::Base
2 #validations
3

4 #assosiations
5

6 #user defined methods
7 end

MK, KB, TŁ, TR (BUT) OSFforRAD 40 / 53

Models and ORM in Ruby on Rails

Active Record Validations Helpers I

validates_acceptance_of - a checkbox on the user interface was
checked
validates_associated - model has associations with other models
and they also need to be validated
validates_confirmation_of - two text fields that should receive
exactly the same content
validates_exclusion_of - the attributes’ values are not included in a
given set
validates_format_of - validates the attributes’ values by testing
whether they match a given regular expression
validates_inclusion_of - the attributes’ values are included in a
given set
validates_length_of - validates the length of the attributes’ values

MK, KB, TŁ, TR (BUT) OSFforRAD 41 / 53

Models and ORM in Ruby on Rails

Active Record Validations Helpers II

validates_numericality_of - attributes have only numeric values
validates_presence_of - the specified attributes are not empty
validates_uniqueness_of - the attribute’s value is unique right
before the object gets saved
validates_with - passes the record to a separate class for
validation
validates_each - validates attributes against a block

1 class Person < ActiveRecord::Base
2 validates_acceptance_of :terms_of_service
3 validates_confirmation_of :email
4 validates_presence_of :email_confirmation
5 validates_length_of :name, :minimum => 2
6 validates_format_of :legacy_code, :with => /\A[a-zA-Z]+\z/,
7 :message => "Only letters allowed"
8 end

MK, KB, TŁ, TR (BUT) OSFforRAD 42 / 53

Models and ORM in Ruby on Rails

Active Record Associations

Type of associations:
belongs_to
has_one
has_many
has_many :through
has_one :through
has_and_belongs_to_many

MK, KB, TŁ, TR (BUT) OSFforRAD 43 / 53

Models and ORM in Ruby on Rails

The belongs_to Association

MK, KB, TŁ, TR (BUT) OSFforRAD 44 / 53

Models and ORM in Ruby on Rails

The has_one Association

MK, KB, TŁ, TR (BUT) OSFforRAD 45 / 53

Models and ORM in Ruby on Rails

The has_many Association

MK, KB, TŁ, TR (BUT) OSFforRAD 46 / 53

Models and ORM in Ruby on Rails

The has_many :through Association

MK, KB, TŁ, TR (BUT) OSFforRAD 47 / 53

Models and ORM in Ruby on Rails

The has_one :through Association

MK, KB, TŁ, TR (BUT) OSFforRAD 48 / 53

Models and ORM in Ruby on Rails

The has_and_belongs_to_many Association

MK, KB, TŁ, TR (BUT) OSFforRAD 49 / 53

Models and ORM in Ruby on Rails

Active Record Query Interface

1 class Client < ActiveRecord::Base
2 has_one :address
3 has_many :orders
4 has_and_belongs_to_many :roles
5 end
6

7 class Address < ActiveRecord::Base
8 belongs_to :client
9 end

10

11 class Order < ActiveRecord::Base
12 belongs_to :client, :counter_cache => true
13 end
14

15 class Role < ActiveRecord::Base
16 has_and_belongs_to_many :clients
17 end

MK, KB, TŁ, TR (BUT) OSFforRAD 50 / 53

Models and ORM in Ruby on Rails

Active Record finder methods

where
select
group
order
limit
offset
joins
includes
lock
readonly
from
having

MK, KB, TŁ, TR (BUT) OSFforRAD 51 / 53

Models and ORM in Ruby on Rails

Retrieving objects

Retrieving a Single Object
1 client = Client.find(10)
2 client = Client.first
3 client = Client.last

Retrieving Multiple Objects
1 client = Client.find(1, 10)
2

3 User.find_each do |user|
4 NewsLetter.weekly_deliver(user)
5 end

MK, KB, TŁ, TR (BUT) OSFforRAD 52 / 53

Models and ORM in Ruby on Rails

Saving the object to the database

create, create!
save, save!
update
update_attributes, update_attributes!

MK, KB, TŁ, TR (BUT) OSFforRAD 53 / 53

	ORM - Introduction
	Models and ORM in Django
	Models and ORM in Ruby on Rails

