
Open Source Frameworks for Rapid Application
Development

Marek Krętowski
Krzysztof Bandurski, Tomasz Łukaszuk, Tomasz Rybak

Software Departament
Faculty of Computer Science

Bialystok University of Technology

m.kretowski@pb.edu.pl
k.bandurski@pb.edu.pl, t.lukaszuk@pb.edu.pl, t.rybak@pb.edu.pl

Lecture topic
Sessions

MK, KB, TŁ, TR (BUT) OSFforRAD 1 / 48

Sessions: Table of content

1 Introduction

2 Django authentication

3 Sessions in Django

4 Session in RoR

5 Security

MK, KB, TŁ, TR (BUT) OSFforRAD 2 / 48

Introduction

Introduction

MK, KB, TŁ, TR (BUT) OSFforRAD 3 / 48

Introduction

HTTP as stateless protocol

HTTP is stateless
It means that each request should be treated the same way
It makes it fast

Allows caching
Allows any server from the farms to create response

It causes problems with storing data between requests
E.g. whether user is authenticated and who one is
Connection details (IP, User Agent, locality settings, plugin
versions) cannot be used to distinguish between users

MK, KB, TŁ, TR (BUT) OSFforRAD 4 / 48

Introduction

Authentication

To store who the user is
To verify those claims
To ensure that user is authorised to perform particular actions on
particular objects
Authentication requires sessions management to be enabled to
work
It has many parts:

Users
Permissions
Groups
Messages
Resources

MK, KB, TŁ, TR (BUT) OSFforRAD 5 / 48

Django authentication

Django authentication

MK, KB, TŁ, TR (BUT) OSFforRAD 6 / 48

Django authentication

Enabling authentication in Django

1 Enable session framework
2 Add “django.contrib.auth” application to INSTALLED_APPS after

sessions application
3 Run manege.py syncdb to create tables storing users information
4 Add django.contrib.auth.middleware.AuthenticationMiddleware to

MIDDLEWARE_CLASSES after sessions middleware classes

MK, KB, TŁ, TR (BUT) OSFforRAD 7 / 48

Django authentication

Managing users

manage.py createsuperuser –username name –email email
Asks for password and other details of user
Helper class django.contrib.auth.models.UserManager

create_user(username, email, password)
make_random_password(length, allowed_chars)

Default value of allowed_chars does not contain neither letter I
and digit 1, nor letter O and digit 0
1 user.groups = [group1, group2]
2 from django.contrib.auth.models import User
3 user = User.objects.create_user(’tomasz’, ’t.rybak@pb.edu.pl’, ’haslo’)
4 user.save()

user.save() is not needed as create_user saves user object to
database
Of course if we change user after creation, explicit saving is
necessary

MK, KB, TŁ, TR (BUT) OSFforRAD 8 / 48

Django authentication

User model fields

Class django.contrib.auth.models.User
username required, 30 characters or less
first_name
last_name

email
password required, hash of password

is_staff boolean, whether user can access Admin module
is_active boolean; is not checked during login process

is_superuser boolean
last_login timestamp

date_joined timestamp

MK, KB, TŁ, TR (BUT) OSFforRAD 9 / 48

Django authentication

User methods

is_authenticated()
is_anonymous()
get_full_name()
set_password(pwd)
set_unusable_password() changes hash of password to impossible

value, practically disallowing login for user
has_usable_password(p)
check_password(pwd)
get_all_permissions()
has_perm(perm) permission is in form application.permission
has_perms(perms)
has_module_perms(module)
get_and_delete_messages()
email_user(subject, body, from_email)
get_profile() returns additional data for user

MK, KB, TŁ, TR (BUT) OSFforRAD 10 / 48

Django authentication

Many-to-many relationships of User class

groups user belongs to
user_permissions set of all permissions

Those two are Python collection
They can be fully replaced
One can call methods on those collections
1 user.groups.add(administrators)
2 user.groups.remove(staff)
3 user.user_permissions.clear()

MK, KB, TŁ, TR (BUT) OSFforRAD 11 / 48

Django authentication

Permissions

Custom permissions can be defined in class Meta of the model
class
They describe permissions for this particular class

1 class Articles(model.Models):
2 class Meta:
3 permissions = ((’name’, ’description’),
4 (’commenting’, ’User can comment on articles’)
5)

MK, KB, TŁ, TR (BUT) OSFforRAD 12 / 48

Django authentication

Logging in and out of users

authenticate(user, password) returns User object or None
login(request, user) attaches User object to request

Creates all cookies, etc.
Function authenticate() must be called before login()

logout(request) does not raise error when user was not logged in
Clears session state

1 from django.contrib.auth import authenticate
2 user = authenticate(username, password)
3 if user is None:
4 # Failed
5 else:
6 if not user.is_active:
7 # Account disabled
8 else:
9 # Everything OK

10 login(request, user)

MK, KB, TŁ, TR (BUT) OSFforRAD 13 / 48

Django authentication

Password storage

Password is not stored in raw form
Instead hash of the password is stored

crypt (legacy Unix)
MD5
SHA1

To defend from attacks using precalculated hashes or rainbow
tables each password is salted before hashing
hashtype$salt$hashvalue
E.g. sha1$abcd$aabbcc

MK, KB, TŁ, TR (BUT) OSFforRAD 14 / 48

Django authentication

Anonymous users

AnonymousUser class implements User interface from
models.User
is_active, is_staff, is_superuser return False
Collections groups and user_permissions are empty
is_authenticated and has_perms return False
Password methods raise NotImplementedError exception
Storage methods (save, delete) raise NotImplementedError
exception

MK, KB, TŁ, TR (BUT) OSFforRAD 15 / 48

Django authentication

User profile

Profile can be used to store additional data about user
Profile class is just a model class
It must have foreign key pointing to the User class
Django needs to know which class contains user profile
AUTH_PROFILE_MODULE = ’application.ProfileClass’
This will cause method get_profile() to return profile object,
instance of class application.models.ProfileClass

MK, KB, TŁ, TR (BUT) OSFforRAD 16 / 48

Django authentication

View decorator

In case of many applications most pages require for user to be
logged in
Repeating code checking for login status in each view function
violated DRY principle
Django authors provide us with function solving this problem
django.contrib.auth.decorators.login_required
If user is logged in view is executed without any changes
If not, browser is redirected to login page
User is redirected to settings.LOGIN_URL page
After successful login user is redirected to previous page
URL is passed in parameter which name is passed in parameter
“redirect_field_name”

MK, KB, TŁ, TR (BUT) OSFforRAD 17 / 48

Django authentication

Views available for logging purposes

Available in module django.contrib.auth.views
login(req, template_name, redirect_field_name)
Default template is registration/login.html
Template receives four variables

form Form representing login form
next URL to redirect to when login is successful
site

site_name
logout(req, template_name, redirect_field_name)

Default template is registration/logged_out.html
logout_then_login(req, login_url)

Logs a user out, then redirects to the login page

MK, KB, TŁ, TR (BUT) OSFforRAD 18 / 48

Django authentication

Password-related views

password_change(req, template_name, post_change_redirect)
Default template is registration/password_change_form.html

password_change_done(req, template_name)
Default template is registration/password_change_done.html

password_reset()
password_reset_done(req, template_name)
password_reset_confirm()
password_reset_complete(req, template_name)

MK, KB, TŁ, TR (BUT) OSFforRAD 19 / 48

Django authentication

Forms used in logging process

AdminPasswordChangeForm
AuthenticationForm
PasswordChangeForm
PasswordResetForm
SetPasswordForm
UserChangeForm
UserCreationForm

MK, KB, TŁ, TR (BUT) OSFforRAD 20 / 48

Sessions in Django

Sessions in Django

MK, KB, TŁ, TR (BUT) OSFforRAD 21 / 48

Sessions in Django

Storage of state

Need to solve problem with statelesness of HTTP
Need to store information between requests
Usually cookies are used to do it
Cookie can store little bits of information in the browser
They are send by browser on each request to the server
They are set of key=value pairs

MK, KB, TŁ, TR (BUT) OSFforRAD 22 / 48

Sessions in Django

Cookies

Cookies are used to store identity and other details of identity of
user on particular site
This means that they can be used to trace users
It also means that getting cookie of logged user one can
impersonate him or her
There are rules of sending cookies for sites by browsers
Same-domain policy

example.com
*.example.com

User agents need not to store cookies
User can remove or change stored cookies

MK, KB, TŁ, TR (BUT) OSFforRAD 23 / 48

Sessions in Django

Cookie in HTTP

HTTP response contains header field “Set-Cookie” containing
cookie from server to this particular client
Client returns cookie to the server in header “Cookie”
Django stores cookies in request.COOKIES dictionary
Key of dictionary is used as key of dictionary
Value contains cookie object
It means that each cookie can have different expirations date, path
and domain, etc.
This is used by many frameworks

MK, KB, TŁ, TR (BUT) OSFforRAD 24 / 48

Sessions in Django

Cookie properties

max_age number of seconds cookie will last
expires date cookie will expire

path path in URL cookie is valid for
domain domain cookie is valid for
secure boolean, if True cookie is only send over encrypted

connection

MK, KB, TŁ, TR (BUT) OSFforRAD 25 / 48

Sessions in Django

Sending cookies in the response

response.set_cookie(key, value)
Additional parameters can be added to manage life of cookies
We are responsible for sending back in response all cookies that
were send in the request

MK, KB, TŁ, TR (BUT) OSFforRAD 26 / 48

Sessions in Django

Testing for cookies

As noted previously not all clients need to support cookies
Although those that ignore them are rather rare
Nonetheless one needs to check whether client supports cookies
Methods in request.session

set_test_cookie()
test_cookie_worked() need to be called in the next response
delete_test_cookie()

MK, KB, TŁ, TR (BUT) OSFforRAD 27 / 48

Sessions in Django

Sessions in Django

Management of cookies, values, etc. can be tedious
Django provides us with functionality of managing sessions

1 Add application “django.contrib.sessions” to INSTALLED_APPS
2 Add django.contrib.sessions.middleware.SessionMiddleware to

MIDDLEWARE_CLASSES
3 Run manege.py syncdb to create tables storing session data

MK, KB, TŁ, TR (BUT) OSFforRAD 28 / 48

Sessions in Django

Sessions in Django

request.session dictionary
Contains pairs key/value
Key should be string
Strings starting with underscore are reserved for Django usage
Session dictionary should not be replaced with another object nor
any attributes of it should be accessed
Values from session dictionay can be removed by using “del”
keyword
Django uses cookies to retrieve correct session object from
database and attach it to request of particular user

MK, KB, TŁ, TR (BUT) OSFforRAD 29 / 48

Sessions in Django

Sessions in Django

Session is model class defined in django.contrib.sessions.models
Primary key identifying particular session object is sent to user in
the cookie
Session object is saved to database after each modification of the
value stored in dictionary
Only direct modifications are detected and cause save of session
object

expire_date
session_data dictionary encoded to textual format
get_decoded() returns session object

MK, KB, TŁ, TR (BUT) OSFforRAD 30 / 48

Sessions in Django

Session configuration

SESSION_EXPIRE_AT_BROWSER_CLOSE boolean, causes cookie
identifying Django session to disappear after browser
window is closed

SESSION_COOKIE_DOMAIN domain to tie session cookie to
SESSION_COOKIE_NAME name of the cookie value storing identity

of the session (primary key); default is “sessionid”
SESSION_COOKIE_SECURE whether “secure” cookies should be

used to store session identity
SESSION_SAVE_EVERY_REQUEST boolean, if set to True Django

will save session to database every time, even if nothing
was changed

MK, KB, TŁ, TR (BUT) OSFforRAD 31 / 48

Session in RoR

Session in RoR

MK, KB, TŁ, TR (BUT) OSFforRAD 32 / 48

Session in RoR

As in Django in RoR session is dictionary-like structure allowing
for storing data for particular client between requests
Each session is identified by session_id
session_id is 32 characters generated by MD5 based

time
constant string
random value

Session is not full dictionary (hash) — not all methods work

MK, KB, TŁ, TR (BUT) OSFforRAD 33 / 48

Session in RoR

Session management

Session can be disabled in particular controllers
This can save memory and processing time
We can enable session for some controllers
Or only for only chosen actions

1 class MyController < ActionController::Base
2 session :off
3 end
4

5 class OtherController < ActionController::Base
6 session :on, :only => [:create, :update]
7 end

MK, KB, TŁ, TR (BUT) OSFforRAD 34 / 48

Session in RoR

Session usage

Session behaves as an hash
Keys are strings or constants
Values can be any type
If value is not needed it can be removed using “delete” method
Setting value to “nil” also causes deleting from session
reset_session() removes all object from session object

1 session[:key] = value
2

3 session[:name] = ’Rybak’
4 session[:email] = ’rybak@example.com’
5 session[:messages] = [’Line1’, ’Line2’]
6

7 session.delete :messages

MK, KB, TŁ, TR (BUT) OSFforRAD 35 / 48

Session in RoR

Session storage

Session values for popular site can take much space
Management of large amount of data can be challenging
Proper management may mean difference between working site
and site that users must wait for any action
Ruby on Rails offers four different ways of storing session data
It is chosen for entire application in
“config.action_controller.session_store”

CookieStore stores data on client; cookie size limit of 4kB applies
DRBStore

MemCacheStore
ActiveRecordStore session stored in database

1 config.action_controller.session_store = :drb_store
2 config.action_controller.session_store = :active_record_store

MK, KB, TŁ, TR (BUT) OSFforRAD 36 / 48

Session in RoR

Flash session

Variable called “flash”
It is special part of session
Like “session” it is hash storing key/value pairs
Values stored in “flash” are cleared after next request
To make them available in the current session (e.g. to use flash
values in rendering of other action) use “flash.now”
flash.keep causes values to be persisted to use in next requests
This function accepts optional list of names to persist

1 flash.now[:key] = value
2 flash.keep(:kay)
3 config.action_controller.session_store = :drb_store
4 config.action_controller.session_store = :active_record_store

MK, KB, TŁ, TR (BUT) OSFforRAD 37 / 48

Session in RoR

Usage of cookies in sessions

All sessions store session_id in the cookie
ActionController::SessionManagement
Data stores in the cookie store is signed (so tampering is very
hard) but is not encrypted, so anyone can read it

MK, KB, TŁ, TR (BUT) OSFforRAD 38 / 48

Session in RoR

Cookies

As noted earlier, cookies are stored on the client
Cookie size limit is 4kB
Client need not to store or return cookies
Variable “cookies” behaves as an hash, but does not support all
dictionary methods
It is similar to variable “session” in this regard

1 cookies[:key] = value
2

3 cookies[:name] = ’Rybak’
4

5 cookies.delete(:messages)

MK, KB, TŁ, TR (BUT) OSFforRAD 39 / 48

Session in RoR

Cookie creation

When creating cookies it is possible to set parameters managing
their lifetime options

value
path default “/”

domain
expires
secure whether to send cookie only over HTTPS

1 cookies[:name] = {:value => ’Rybak’, :path = ’/administration’}

MK, KB, TŁ, TR (BUT) OSFforRAD 40 / 48

Session in RoR

RoR authentication

Usually controller uses “before_filter” to ensure authorisation of
user
Session is used to store state of the user
In most cases one implements custom authentication code
Or uses additional module

1 class MyController < ActionController::Base
2 before_filter :require_login
3

4 def require_login
5 if session[:logged] == 1
6 return
7 fi
8 if username == ’tomasz’ && password == ’topsecret’
9 session[:logged] = 1

10 fi
11 redirect
12 end
13 end

MK, KB, TŁ, TR (BUT) OSFforRAD 41 / 48

Session in RoR

HTTP Basic authentication

HTTP allows us to use authentication
Exact messages in previous lectures
authenticate_or_request_with_http_basic
It is necessary not to store plain-text password

1 def authenticate
2 authenticate_or_request_with_http_basic do |username, password|
3 username == USERNAME && Digest::MD5.hexdigest(password) == PASSWORD
4 end
5 end

MK, KB, TŁ, TR (BUT) OSFforRAD 42 / 48

Security

Security

MK, KB, TŁ, TR (BUT) OSFforRAD 43 / 48

Security

Attacks

There is many different attacks in the internet
Most of them are trying to steal identity of the used on one of the
sites
Of course the most valuables are bank sites
But email and blog accounts are also nice
Community portals are nice point of interest
Online games allow for monetizing virtual goods

MK, KB, TŁ, TR (BUT) OSFforRAD 44 / 48

Security

Session hijacking

When user is logged in attacker can steal his session
One of possibilities is to steal cookie with session id
JavaScript has access to the cookies
If domain or path are set to generously rogue site can receive
cookie with session id
Embedding iframe in valid site can lead to leak of session
When user was logged in and site does not clear session
immediately after logout, attacker can use old cookie (reply attack)

MK, KB, TŁ, TR (BUT) OSFforRAD 45 / 48

Security

Session from other source

Session fixation
Attacker creates session (and knows its id)
This session id is send to the victim
Victim logs in
Attacker knows id of valid logged in session
To protect from this attack it is advised to replace old session
(either id or entire session) with new one after successful login

MK, KB, TŁ, TR (BUT) OSFforRAD 46 / 48

Security

Cross Site Request Forgery

CSRF
Attacker embeds command causing action on attacked site on
another site
This way when user clicks link or image command is send for
example to banking site
To protect from it in RoR use “:verify” and “protect_from_forgery”

MK, KB, TŁ, TR (BUT) OSFforRAD 47 / 48

Security

Cross Site Scripting

XSS
Application accepts data from external source
User input is not validated
It then puts this data into page sent to other users
This can be done directly or (more dangerous) this data might be
saved to database
This allows for the attacker to put JavaScript or other code to be
embedded in the pages displayed to the victims
Always validate and escape user input!

MK, KB, TŁ, TR (BUT) OSFforRAD 48 / 48

	Introduction
	Django authentication
	Sessions in Django
	Session in RoR
	Security

