Open Source Frameworks for Rapid Application
Development

Marek Kretowski
Krzysztof Bandurski, Tomasz tukaszuk, Tomasz Rybak

Software Departament
Faculty of Computer Science
Bialystok University of Technology

m.kretowski@pb.edu.pl
k.bandurski@pb.edu.pl, t.lukaszuk@pb.edu.pl, t.rybak@pb.edu.pl

Lecture topic
Controllers J

MK, KB, T, TR (BUT) OSFforRAD 1/38

]
Controllers: Table of content

@ Introduction

e Ruby on Rails controllers
@ Overview
@ Parameters
@ Creating HTTP response
@ Filters
@ The Request and Response Objects

e Django views
@ Overview
@ Parameters
@ Returning errors
@ Django shortcut functions
@ View decorators
@ Request and response objects

MK, KB, T, TR (BUT) OSFforRAD 2/38

Introduction

Introduction)

MK, KB, T, TR (BUT) OSFforRAD 3/38

Model-View-Controller pattern

MVC
@ architectural pattern

N
1 . I @ isolates "domain logic” from
/ the user interface
A | Controller @ proposed in 1979 by Trygve
& J Reenskaug for Smalltalk

MK, KB, T, TR (BUT) OSFforRAD

4/38

Model-View-Controller pattern

Model:
@ is an object representing data or even activity
@ manages the behavior and data of the application domain
@ passive model, active model
View:
@ is some form of visualization of the state of the model
@ renders the model into a user interface element
Controller:
@ offers facilities to change the state of the model

@ receives user input and initiates a response by making calls on
model objects

@ accepts input from the user and instructs the model and viewport
to perform actions based on that input

MK, KB, T, TR (BUT) OSFforRAD 5/38

Ruby on Rails controllers J

MK, KB, T, TR (BUT) OSFforRAD 6/38

Controllers overview

@ Action Controller module
@ controller is a Ruby class which inherits from ApplicationController

@ controllers are stored in
app/controllers/name_controller.rb files

@ routing has determined which controller should be use for a
request

@ controller is responsible for making sense of the request and
producing the appropriate output

MK, KB, T, TR (BUT) OSFforRAD 7138

Overview
Methods and Actions

@ controller is a Ruby class inherits from ApplicationController

@ controller has methods just like any other class

@ When your application receives a request, the routing will
determine which controller and action to run, then Rails creates

an instance of that controller and runs the method with the same
name as the action.

class ClientsController < ApplicationController

def new
end

private
def foo
end

© VW ® U o U W N
)

11 end

MK, KB, T, TR (BUT) OSFforRAD 8/38

Ruby on Rails controllers Overview

Controller for RESTful routing

© VW ® U oUW NP

NN S
W NP O WW®WIJo s WwN P

class Controller < ApplicationController

def

end
def

end

def

end

def

end
def

end

def

end
end

index

show

new

edit

update

destroy

MK, KB, T, TR (BUT) OSFforRAD

9/38

Parameters

@ two kinds of parameters possible in a web application
query string parameters (everything after ”?” in the URL)
POST data (usually comes from an HTML form)

@ Rails does not make any distinction between query string and
POST parameters

@ params hash

1 class ClientsController < ActionController::Base
2

3 def index

4 if params[:status] == "activated"
5 @clients = Client.activated

6 else

7 @clients = Client.unactivated

8 end

9 end

10

11 end

MK, KB, T, TR (BUT) OSFforRAD

10/38

Hash and Array Parameters

@ The params hash is not limited to one-dimensional keys and

values.

@ sending an array of values
GET /clients?ids[]=l&ids[]=2&1ds[]=3

params[:1ids] ==

@ sending a hash

["1", "2",

"3"]

1

2 <input
3 <input
4 <input
5 <input
6 </form>

type="text"
type="text"
type="text"
type="text"

<form action="/clients" method="post">
name="client [name]"
name="client [phone]" value="12345" />

name="client [address] [postcode]" value="12345" />
name="client [address] [city]" value="Carrot City" />

value="Acme" />

params[:client]
"12345",
llcjj:y|l =>

MK, KB, Tk, TR (BUT)

== {"name"
"address" => {"postcode" => "12345",
"Carrot City"}}

OSFforRAD

=> "Acme ", "phone" =>

11/38

Routing Parameters

@ the params hash will always contain the : controller and
:action keys

@ methods controller name and action_name

@ other parameters defined by the routing, such as : id will also be
available

map.connect "/clients/:status",
:controller => "clients",
taction => "index",
:foo => "bar"

=W N e

MK, KB, T, TR (BUT) OSFforRAD 12/38

Creating HTTP response
Ways of creating HTTP responses

render sends full response to the client
redirect_to sends HTTP redirect status
head sends header-only response

MK, KB, T, TR (BUT) OSFforRAD

13/38

Creating HTTP response
Hello world in RoR

1 class Controller < ApplicationController

2 def index

3 render :text => "Hello world!", :content_type = "text/plain"
4 end

5 end

MK, KB, T, TR (BUT, OSFforRAD 14/38

Convention

@ method name in the controller mycontr renders the view
app/views/mycontrs/name.html.erb (unless explicitly
stated otherwise)

@ even if the controller mycont r there is no method name, action

name renders the view
app/views/mycontrs/name.html.erb (in case of proper

routing)
1 class ClientsController < ApplicationController
2 def new
3 # renders the vie lews contrs/ne tml.erk
4 end
5
6 ti index renders the view rs/index tml.er
7 end

MK, KB, T, TR (BUT) OSFforRAD

15/38

Filters
Filters

@ Filters are methods that are run before, after or "around" a

controller action.

@ Filters are inherited, a filter on ApplicationController will be run on

every controller in your application
@ Before filters may halt the request cycle

W O UG W N

10
11
12
13
14

class ApplicationController < ActionController::Base
before_filter :require_login
skip_before_filter :require_login, :only => [:new, :create]

private

def require_login
unless logged_in?
flash[:error] = "You must be logged in to access this section"
redirect_to new_login_url # halts request cycle
end
end

end

MK, KB, T, TR (BUT) OSFforRAD

16/38

The Request and Response Objects
The request and response Objects

@ in every controller there are two accessor methods: request and
response

@ them are associated with the request cycle that is currently in
execution

@ the request method contains an instance of AbstractRequest

@ the response method returns a response object representing
what is going to be sent back to the client

MK, KB, T, TR (BUT) OSFforRAD 17/38

The request Object

host - The hostname used for this request.

domain(n=2) - The hostname first n segments, starting from the right.
format - The content type requested by the client.

method - The HTTP method used for the request.

get?, post?, put?, delete?, head? - Returns true if the HTTP method is
GET|POST|PUT|DELETE|HEAD.

headers - Returns a hash containing the headers associated with the
request.

port - The port number (integer) used for the request.

protocol - Returns a string containing the protocol used plus "//", for
example "http://".

query_string - The query string part of the URL, everything after "?".
remote_ip - The IP address of the client.

url - The entire URL used for the request.

MK, KB, T, TR (BUT) OSFforRAD 18/38

The response Object

body - This is the string of data being sent back to the client. This is
most often HTML.

status - The HTTP status code for the response, like 200 for a
successful request or 404 for file not found.

location - The URL the client is being redirected to, if any.
content_type - The content type of the response.

charset - The character set being used for the response. Default is
"utf-8".

headers - Headers used for the response.

MK, KB, T, TR (BUT) OSFforRAD 19/38

Django views |

MK, KB, T, TR (BUT) OSFforRAD 20/38

Overview

@ Views in Django respond for the "Controller” part of MVC pattern
@ They are stored in views.py file
@ This (initially empty) file is created by django-admin command

@ View takes django.http.HttpRequest object and should
return django.http.HttpResponse

@ Name of the function does not matter

@ Which function is called for which URL depends on urls.py file
content

@ First parameter of the view function is always Ht t pRequest

@ Function can have more parameters, depending on content of
urls.py file

MK, KB, T, TR (BUT) OSFforRAD 21/38

G5
The simplest view in Django

from django.http import HttpResponse

1

2

3 def function (request) :

4 return HttpResponse (’Hello world!’)

View function is solely responsible for generating content send to
the user
e (ignoring middleware which can change this content)

Each view function takes an Ht tpRequest object as its first

parameter, which is typically named request

Function must return Ht tpResponse object

@ Namespace django.http contains many classes that can ease
managing responses to the user

@ HttpResponse accepts content string as one of its parameters

@ This string is send as the response to the user

@ Although name of the function does not matter, it is good practice

to give meaningful names to ease maintaining of the code

MK, KB, T, TR (BUT) OSFforRAD 22/38

View function parameters — unnamed groups

W O g G W N

10

urls.py:
(r’ *path/ (\d+) /([a-z1{2,5})/$’, function)

views.py:
from django.http import HttpResponse

def function(request, paraml, param2):
string = ’Number: ’ + paraml
string = string + ’ String: ’ + param2
return HttpResponse (string)

@ Order of parameters is the same as order of regular expression
groups in urls.py

@ Group must be surrounded by parentheses

@ Name of function parameters does not matter

@ Only order is taken into consideration

@ Types of all such parameters is string, regardless of regular
expression used to capture them

MK, KB, T, TR (BUT) OSFforRAD 23/38

View function parameters — named groups

1 urls.py:

2 (r’ “path/ (?P<number>\d+) / (?P<string>[a-z]{2,5})/$’, function),
3

4 views.py:

5 from django.http import HttpResponse

6

7 def function(request, string, number):

8 string = ’'Number: ’ + number

9 string = string + ’/ String: ’ + string

0

return HttpResponse (string)

@ Names are used instead of order to distinguish parameters

@ Names must be the same as those given to groups in regular
expression in urls.py

@ Order of those parameters does not matter

MK, KB, T, TR (BUT) OSFforRAD 24 /38

View function parameters — named groups

1 urls.py:

2 (r’ "path/ (?P<number>\d+) / (?P<string>[a-z]{2,5})/$’, function),
3

4 views.py:

5 from django.http import HttpResponse

6

7 def function(request, string, number):

8 string = 'Number: ’ + number

9 string = string + ’ String: ’ + string

0

return HttpResponse (string)

@ As previously, types of all such parameters is string, regardless of
regular expression used to capture them

@ Similar syntax (question mark and additional parameters) is used
in many regular expression engines to give parameters that
change behaviour during matching process

MK, KB, T, TR (BUT) OSFforRAD 25/38

Parameters
Additional parameters

@ Third (optional) fragment of tuple from urls.py may be dictionary

@ It will be given to view function as named parameters

@ This allows for giving additional parameters to the function

1 urls.py:
2 (r’ “path/ (\d+)/([a-2]{2,5})/$’, function, {’namel’: ’string’, ’'name2’: ’'string’l})),
3
4 views.py:
5 from django.http import HttpResponse
6
7 def function (request, paraml, param2, namel, name2) :
8 string = ’'Number: ’ + paraml
9 string = string + ’/ String: ’ + param2
10 string = string + ’/ Name: ’ + name2
11 return HttpResponse (string)
MK, KB, T, TR (BUT) OSFforRAD 26/38

Returning errors
Returning errors

@ subclasses of Ht tpResponse for a number of common HTTP
status codes other than 200 (which means "OK")

@ return an instance of one of those subclasses instead of a normal
HttpResponse in order to signify an error

1 def my_view (request) :

2 # o0

3 if foo:

4 return HttpResponseNotFound (’<hl>Page not found</hl>")
5 else:

6

return HttpResponse (' <hl>Page was found</hl>")

MK, KB, T, TR (BUT) OSFforRAD 27/38

Returning errors
Returning errors (cd)

@ there isn’t a specialized subclass for every possible HTTP
response code

@ you can pass the HTTP status code into the constructor for
HttpResponse o create a return class for any status code

def my_view (request) :

Return a "cre

ated" (201) response code

return HttpResponse (status=201)

MK, KB, T, TR (BUT) OSFforRAD 28/38

Returning errors
The Http404 exception

@ HTTP error code 404 - file/page not found error

@ class django.http.Http404

@ Django provides an Http404 exception

@ template 404 .html (located in the top level of your template tree)

from django.http import Http404

def detail (request, poll_id):
try:
p = Poll.objects.get (pk=poll_id)
except Poll.DoesNotExist:
raise Http404
return render_to_response (‘polls/detail.html’, {’poll’: p})

©® 9 s W NP

MK, KB, T, TR (BUT) OSFforRAD 29/38

s siie iz
Django shortcut functions

@ package django.shortcuts

@ functions
render
render_to_response
redirect
get_object_or_404
get_list_or_404

MK, KB, T, TR (BUT) OSFforRAD 30/38

Django shortcut functions
render function

render (request, template[, dictionary] [, context_instance]

2 [, content_typel [, status][, current_app])

1 from django.shortcuts import render

2

3 def my_view (request) :

4 # 1 w code CEge

5 return render (request, ’'myapp/index.html’, {"foo": "bar"},
6 content_type="application/xhtml+xml")

equivalent to

1 from django.http import HttpResponse

2 from django.template import Context, loader

3

4 def my_view(request):

5 # View c e here...

6 t = loader.get_template ('myapp/template.html’)
7 c = RequestContext (request, {’foo’: 'bar’})

8 return HttpResponse (t.render (c),

9 content_type="application/xhtml+xml")

MK, KB, TR (BU

OSFforRAD 31/38

render_to_response function

‘ 1 render_to_response (template[, dictionary] [, context_instance] [, mimetype])
1 from django.shortcuts import render_to_response
2
3 def my_view (request) :
4 # | 'T‘ code nere...
5 return render_to_response ('myapp/index.html’, {"foo": "bar"},
6 mimetype="application/xhtml+xml")

equivalent to

© ©® d oUW N

from django.http import HttpResponse
from django.template import Context, loader

def my_view(request) :

t = loader.get_template ('myapp/template.html’)

c = Context ({’foo’: ’'bar’})

return HttpResponse (t.render (c),
mimetype="application/xhtml+xml")

MK, KB, T, TR (BUT, OSFforRAD

32/38

Django shortcut functions
redirect function

‘1 redirect (to[, permanent=False], xargs, **kwargs)

@ returns an HttpResponseRedirect
@ the arguments could be
@ a model: the model’'s get_absolute_url () function will be
called

@ aview name: uses urlresolvers.reverse ()
e a URL

def my_view (request) :

object = MyModel.objects.get(...)
return redirect (object)

return redirect (' some-view—-name’, foo='bar’)

© ©® Jd o U W N

[y
o

return redirect (' /some/url/’)

MK, KB, T, TR (BUT) OSFforRAD

33/38

Django shorteut functions
get_object_or_404 function

@ calls get () on a given model manager, but it raises Http404
instead of the model's DoesNotExist exception

from django.shortcuts import get_object_or_ 404

1

2

3 def my_view (request) :

4 my_object = get_object_or_404 (MyModel, pk=1)

equivalent to

from django.http import Http404

1

2

3 def my_view (request) :

4 try:

5 my_object = MyModel.objects.get (pk=1)
6 except MyModel.DoesNotExist:

7 raise Http404

MK, KB, T, TR (BUT) OSFforRAD 34/38

Django shorteut functions
get_list_or_404 function

@ returns the result of filter () on a given model manager, raising
Http404 if the resulting list is empty

from django.shortcuts import get_list_or_404

def my_view (request) :
my_objects = get_list_or_404 (MyModel, published=True)

S W N e

equivalent to

from django.http import Http404

my_objects = list (MyModel.objects.filter (published=True))
if not my_objects:

1
2
3 def my_view (request) :
4
5
6 raise Http404

MK, KB, T, TR (BUT) OSFforRAD 35/38

View decorators
View decorators

@ decorators can be applied to views to support various HTTP
features

@ decorator require_http_methods

from django.views.decorators.http import require_http_methods

1

2

3 @require_http_methods (["GET", "POST"])
4 def my_view (request) :
5 -
6

7

I can assume now that only GET or POST requests make it this fa

pass

@ decorators require_GET (), require_POST ()

@ decorators condition, etag, last_modified (Conditional
view processing)

@ decorator gzip_page (GZip compression)

MK, KB, T, TR (BUT) OSFforRAD 36/38

Class HttpRequest

Attributes: Methods:
@ path @ get_host()
@ path_info @ get full_path()
@ method @ build_absolute_uri(location)
@ encoding @ is_secure()
@ GET, POST, REQUEST @ is_ajax()
@ COOKIES ° ..
e FILES
e META
@ user
@ session
@ raw_post_data
@ urlconf

MK, KB, T, TR (BUT) OSFforRAD 37/38

Class HttpResponse

Attributes: Methods:
@ content @ has_header(header)
@ status_code @ set_cookie(key, value)
@ delete_cookie(key)
° ..

MK, KB, T, TR (BUT) OSFforRAD 38/38

	Introduction
	Ruby on Rails controllers
	Overview
	Parameters
	Creating HTTP response
	Filters
	The Request and Response Objects

	Django views
	Overview
	Parameters
	Returning errors
	Django shortcut functions
	View decorators
	Request and response objects

