Open Source Frameworks for Rapid Application
Development

Marek Kretowski
Krzysztof Bandurski, Tomasz tukaszuk, Tomasz Rybak

Software Departament
Faculty of Computer Science
Bialystok University of Technology

m.kretowski@pb.edu.pl
k.bandurski@pb.edu.pl, t.lukaszuk@pb.edu.pl, t.rybak@pb.edu.pl

Lecture topic
Python J

MK, KB, T, TR (BUT) OSFforRAD 1/55

|
Python: Table of content

@ What is Python?
@ Programming philosophy
@ Properties
@ Uses

© Basics

@ Coding style
@ Native datatypes
@ The power of introspection

e Functions and classes
@ Functions
@ Classes
e Control flow
© Advanced features
@ Decorators
@ lterators and Generators

MK, KB, T, TR (BUT) OSFforRAD 2/55

What is Python?

What is Python? |

MK, KB, T, TR (BUT) OSFforRAD 3/55

History

@ Conceived in the late 1980 by Guido Van Rossum at Centrum
Wiskunde & Informatica in Netherlands. Named after 'Monty
Python’s Flying Circus’.

@ 16 October 2000: the release of Python 2.0

@ 3 December 2008: the release of Python 3.0. Backward
incompatible with Python 2.0, but many features have been
backported to Python 2.6

@ 2.x and 3.x releases are now in simultaneous develpment
@ 27 November 2010: the release of Python 2.7.1 and 3.1.3

MK, KB, T, TR (BUT) OSFforRAD 4/55

iz et e
The Zen of Python |

...a.k.a. PEP 20 (PEP = Python Enhancement Proposal)
@ Beautiful is better than ugly.
@ Explicit is better than implicit.
© Simple is better than complex.
© Complex is better than complicated.
© Flat is better than nested.
© Sparse is better than dense.
@ Readability counts.
© Special cases aren't special enough to break the rules.
© Although practicality beats purity.
@ Errors should never pass silently.
@ Unless explicitly silenced.
@ In the face of ambiguity, refuse the temptation to guess.

MK, KB, T, TR (BUT) OSFforRAD 5/55

iz et e
The Zen of Python Il

@® There should be one— and preferably only one —obvious way to do
it.

@ Although that way may not be obvious at first unless you’re Dutch.
@ Now is better than never.

@ Although never is often better than *right* now.

@ If the implementation is hard to explain, it's a bad idea.

@ If the implementation is easy to explain, it may be a good idea.

@© Namespaces are one honking great idea — let's do more of those!

MK, KB, T, TR (BUT) OSFforRAD 6/55

General |

Interpreted

Uses byte-code (*.pyc and *.pyo files)
EVERYTHING IS AN OBJECT

Very clear, readable syntax

Modules, classes, functions

Full modularity, supporting hierarchical packages

Multi-paradigm: object-oriented and structured programming + a
number of other language features: fuctional programming,
aspect-oriented programming

@ Dynamic and strong typing, polymorphism, garbage collector, late
binding

MK, KB, T, TR (BUT) OSFforRAD 7155

General Il

@ duck typing: ‘'when | see a bird that walks like a duck and swims
like a duck and quacks like a duck, | call that bird a duck.” - James
Whitcomb Riley

@ Operator overloading
@ Indentation for block structure
@ Strong introspection capabilities

@ Extensions and modules easily written in C, C++ (or Java for
Jython, or .NET languages for IronPython)

MK, KB, T, TR (BUT) OSFforRAD 8/55

Properties
High-level data types

@ Numbers: int, long, float, complex
@ Strings: immutable

@ Basic containers: lists, dictionaries, sets (mutable), tuples
(immutable)

@ Other types for e.g. binary data, regular expressions, introspection
@ Extension modules can define new ’built in’ datatypes

MK, KB, T, TR (BUT) OSFforRAD 9/55

Uz
Why use it? |

@ Reduced development time
@ Very clear, readable syntax (program maintenance)
@ Very easy to learn

@ Quite fast! (Fractal benchmark,
http://www.timestretch.com/FractalBenchmark.html)

Language exec. time (s) slowdown
C gce-4.0.1 0.05 1.00x

Java 1.4.2 0.40 8.00x

Python 2.5.1 9.99 199.80x
Perl 5.8.6 optimized 12.37 247.34x
PHP 5.1.4 23.13 462.40x
Javascript Spider Monkey v1.6 31.06 621.27x
Ruby 1.8.4 34.31 686.18x

MK, KB, T, TR (BUT) OSFforRAD 10/55

Uz
Why use it? I

@ Extensive standard libraries and third party modules for virtually
every task

@ Runs everywhere (Windows, Linux/Unix, Mac, Amiga)
@ Open and free!

MK, KB, T, TR (BUT) OSFforRAD 11/55

Uses
What is it used for?

@ rapid prototyping

@ scripting (including web scripting)
@ throw-away, ad hoc programming
@ steering scientific applications

@ XML processing

@ database applications

@ GUI applications

MK, KB, T, TR (BUT) OSFforRAD 12/55

Uses
Who uses it?

@ YouTube.com

@ Industrial Light & Magic

@ Google

@ RedHat (installation tools)

@ EveOnline (a massive multiplayer game)
@ EZTrip.com

@ Firaxis Games (Sid Meier’s Civilization)

MK, KB, T, TR (BUT) OSFforRAD 13/55

Basics

Basics)

MK, KB, Tt, TR (BUT) OSFforRAD 14 /55

Coding style
First Python program

1 def buildConnectionString (params) :

2 3] ic tring fr icti r £ I eters
3 Re r

4

5 return ";".join(["%s=%s" % (k, v) for k, v in params.items()])
6

7 if _ name_ == "_ main_ ":

8 myParams = {"server":"mpilgrim",

9 "database":"master",

10 "uid":"sa",

11 "pwd":"secret",

12 }

13 print buildConnectionString (myParams)

Output:
server=mpilgrim;uid=sa;database=master;pwd=secret

@ This example shows basic uses of functions, strings, tuples, lists
and dictionaries

@ Note the code indentation!

MK, KB, T, TR (BUT) OSFforRAD 15/55

Ciclis iz
Everything is an object

def buildConnectionString (params)

g .
"""Build a

mwnn

(GRS R

return ";".join(["%$s=%s" % (k, v) for k, v in params.items()])

>>> import odbchelper

>>> params = {"server":"mpilgrim", "database":"master",
"uid":"sa", "pwd":"secret"}

>>> print odbchelper.buildConnectionString (params)

server=mpilgrim;uid=sa;database=master;pwd=secret

>>> print odbchelper.buildConnectionString.__doc_

Build a connection string from a dictionary

Returns string.

@ Note how we access the ___doc___string - a function is also an

object!

MK, KB, T, TR (BUT, OSFforRAD

16 /55

Native datatypes
Dictionaries

>>> d = {"server":"mpilgrim", "database":"master"}
>>> d
{"server’: 'mpilgrim’, ’'database’: ’'master’}

>>> d["server"]
"mpilgrim’
>>> d["mpilgrim"]
Traceback (innermost last):
File "<interactive input>", line 1, in ?
KeyError: mpilgrim
>>> d[24] = 6666

>>> d

{’server’: 'mpilgrim’, ’‘database’: ’'master’, 24 : 666}
>>> del d[’server’]

>>> d

{"database’: 'master’, 24 : 666}

@ Dictionary keys and values can be virtually anything (nesting!)
@ Dictionaries ARE NOT ORDERED

MK, KB, T, TR (BUT) OSFforRAD 17 /55

Native datatypes
Lists

>>> 1i = ["a", "b", "mpilgrim", "z", "example"
>>> 11

7l

["a’, '"b’, 'mpilgrim’, z', ’'example’]

>>> 1i[4]

"example’

>>> 1i[-1]

"example’

>>> 1i[1:3]

["b", 'mpilgrim’]

>>> 1i.append ("new")

>>> 11

["a’, 'b’, 'mpilgrim’, 'z’, ’'example’, ’'new’]

>>> 11 = [’a’, 'b’, 'mpilgrim’]
>>> 11 = 1i + [’example’, ’'new’]
>>> 11

["a’, 'b’, 'mpilgrim’, ’example’, ’'new’]

@ List elements can also be anything (nesting!)
@ Lists ARE ORDERED
@ More list methods: remove, push, pop, index...

MK, KB, T, TR (BUT) OSFforRAD 18/55

Native datatypes
List comprehensions

def buildConnectionString(params) :

wnn

a o W N
@
G
5

return ";".Jjoin(["%$s=%s" % (k, v) for k, v in params.items()])

@ Provide a concise way to create lists.
@ Each list comprehension consists of an expression followed by a
for clause, then zero or more for or if clauses.

>>> vecl = [2, 4, 6]

>>> vec2 = [4, 3, -9]

>>> [(x, x*x2) for x in vecl]

[(2, 4), (4, 1le6), (6, 36)]

>>> [xxy for x in vecl for y in vec2]

[8, 6, -18, 16, 12, -36, 24, 18, -54]

>>> [x+y for x in vecl for y in vec2]

6, 5, =7, 8, 7, =5, 10, 9, =3

>>> [vecl[i]*vec2[i] for i in range (len(vecl))]
[8, 12, -54]

MK, KB, T, TR (BUT) OSFforRAD 19/55

Native datatypes
Tuples

>>> t = ("a", "b", "mpilgrim", "z", "example")
>>> ¢
(Ya’", '"b’, 'mpilgrim’, ’'z’, ’'example’)
>>> t[0]
rar
>>> t[-1]
"example’
>>> t[1:3]
("b’, ’'mpilgrim’)
>>> t.append("new")
Traceback (innermost last) :
File "<interactive input>", line 1, in ?
AttributeError: ’tuple’ object has no attribute ’append’
>>> "z" in t

True

@ Tuple elements can also be anything (nesting!)

@ Tuples ARE ORDERED

@ Tuples HAVE NO METHODS and are immutable. ..

@ ...but tuple elements can be!

MK, KB, T, TR (BUT) OSFforRAD

20/55

>>> sl = set([’one’, ’'two’, ’'three’])
>>> s2 = set([’'two’, ’'three’, 4])

>>> sl | s2

set ([4, ’"two’, ’"three’, ’'one’l])
>>> sl ~ s2

set ([4, ’'one’])

>>> sl & s2

set (['two’, ’three’])

>>> sl - s2

set (["one’])

@ A set object is an unordered collection of immutable values

@ Useful for membership testing, removing duplicates from a
sequence, and computing mathematical operations such as
intersection, union, difference, and symmetric difference.

MK, KB, T, TR (BUT) OSFforRAD 21/55

Native datatypes
Declaring variables

>>> x
Traceback (innermost last) :

File "<interactive input>", line 1, in ?
NameError: There is no variable named ’x’
>>> x =1
>>> x
1

>>> range (7)
[0, 1, 2, 3, 4, 5, 6]

>>> (MO, TUE, WED, THU, FRI, SAT, SUN) = range(7)
>>> MO

0

>>> TUE

1

>>> SUN

6

@ You can’t declare a variable without assigning it a value

@ You can assign multiple values at once

MK, KB, T, TR (BUT) OSFforRAD

22/55

il Gy 22
Formatting strings |

>>> k = "uid"

>>> v = "sa"

>>> "$s=%s" % (k, v)

"uid=sa’

>>> uid = "sa"

>>> pwd = "secret"

>>> print pwd + " is not a good password for " + uid

secret is not a good password for sa

"o o

>>> print "%s is not a good password for %$s" % (pwd, uid)
secret is not a good password for sa
>>> userCount = 6
>>> print "Users connected: %d" % (userCount,)
Users connected: 6
>>> print "Users connected: " + userCount
Traceback (innermost last):
File "<interactive input>", line 1, in ?
TypeError: cannot concatenate ’str’ and ’int’ objects

@ Strong typing: you can’t add an integer to a string!

OSFforRAD 23/55

MK, KB, TR (BU

il Gy 22
Formatting strings Il

>>> d = { 'pwd’ : ’'secret’, 'uid’ : ’'sa’ }
>>> "% (uid) s=% (pwd) s # user id: %$(uid)s, password: $(pwd)s" $ d
"sa=secret # user id: sa, password: secret’

@ You can also format strings using dictionaries (keyword

arguments)
@ This allows you to use each argument many times (or not use it at
all)
>>> params = {"server":"mpilgrim", "database":"master",
. "uid":"sa", "pwd":"secret"}
>>> ["$s=%s" $ (k, v) for k, v in params.items()]
["server=mpilgrim’, ’uid=sa’, ’'database=master’, ’'pwd=secret’]
>>> ";" Join(["%s=%s" % (k, v) for k, v in params.items()])
’server=mpilgrim;uid=sa;database=master;pwd=secret’

@ Strings are also objects - like everything else!

MK, KB, T, TR (BUT) OSFforRAD 24 /55

Everything is an object

>>> s = "abc"
>>> dir(s)
[/ _add__', '__class__', '__contains__ ', ’'__delattr ', '
_ _format__ ', '_ge_ ", ’'__getattribute_ ', ’__getitem_ ',
, '_getslice_ ', '_gt_', ' _hash ', '__init_ ', ’'__le_ ',
_ 1t ', '_mod_', '_mul_ ', '_ne_ ', '__new_ ',
! _rmod__',

doc__ ',

reduce_ex__ ", ' repr__ ',
! str__ ' ! subclasshook__’,

_ "
! _formatter_parser’, ’‘capitalize’, ’center’
! format’,

"expandtabs’, ’find’,
’isspace’, ’istitle’,
'rfind’,

"replace’,
'split’, ’splitlines’,
"upper’, ’'zfill’]

sizeof_ ',
’count’,

’index’,
’isupper’,
’rindex’,

"endswith’,
"isdigit’,
"lstrip’,

’islower’,
'partition’

"rstrip’,
"translate’,

’
’lower’,
rpartition’,
strip’, ’swapcase’,

'rsplit’,
rtitle’,

'’ _getnewargs__ '

! __reduce__’,
! _rmul__ ', '__setattr_ ',
! _formatter_field_name_split’,
’"decode’,
’isalnum’,
"join’,

’startswith’,

' eq ", !

' len ', '
’

’

"encode’,
’isalpha’
"1just’,
"rjust’, '

’

@ Did | mention that everything is an object...?
@ NOTE: Double underscores are only a convention

OSFforRAD

MK, KB, TR (BU

25/55

The power of introspection
type, str and other built-in functions

>>> type (1)

<type ’'int’>

>>> 11 = []

>>> type (11i)

<type ’list’>

>>> import odbchelper
>>> type (odbchelper)
<type ’'module’>

>>> import types

>>> type (odbchelper) == types.ModuleType

True

>>> str(l)

rqr

>>> horsemen = [’'war’, ’pestilence’, ’'famine’]

>>> horsemen

["war’, ’'pestilence’, ’famine’

>>> str (horsemen)

"[’war’, ’'pestilence’, ’famine’]"

>>> str (odbchelper)

"<module ’odbchelper’ from ’c:\\docbook\\dip\\py\\odbchelper.py’>"

@ Other introspecting built-ins: callable, isinstance, getattr

MK, KB, T, TR (BUT, OSFforRAD 26/55

Functions and classes)

MK, KB, Tt, TR (BUT) OSFforRAD 27/55

Functions
Optional and named arguments

def info (object, spacing=10, collapse=1l):

Valid calls:

info (odbchelper)
info (odbchelper, 12) #2
info (odbchelper, collapse=0) E
info (spacing=15, object=odbchelper) #4

With only one argument, spacing gets its default value of 10 and
collapse gets its default value of 1.

With two arguments, collapse gets its default value of 1.

Here you are naming the collapse argument explicitly and
specifying its value. spacing still gets its default value of 10.
Even required arguments (like object, which has no default
value) can be named, and named arguments can appear in any
order.

MK, KB, T, TR (BUT) OSFforRAD 28/55

© 00 ©

Functions
xargs and *xkwargs

1 def foo(hello, *args, x*kwargs):
2 print hello

3 print ’arguments:’

4 for each in args:

5 print ’'arg: %s’ % each
6 print ’keyword arguments:’
7 for each in kwargs:

8
9
0
1

o

print 'kwargs: %$s=%s’ % (each, kwargs[each])

if _ name_ == '_ _main__ ’':
foo('LOVE’, ’'one’, ’'two’, kwargl=’three’, kwarg2=’four’

Result:

LOVE

arguments:

arg: one

arg: two

keyword arguments:
kwargs: kwargl=three
kwargs: kwarg2=four

MK, KB, TR (BU

OSFforRAD 29/55

Classic classes

>>> class ClassicClass:
pass

>>> dir (ClassicClass)
["__doc_ ', "_ _module_ ']

@ A class can implement certain operations that are invoked by
special syntax (such as arithmetic operations or subscripting and
slicing) by defining methods with special names (e.g.
__getitem_). This allows classes to define their own behavior
with respect to language operators.

@ Note the __doc__ attribute.
@ Classes are also objects!

MK, KB, T, TR (BUT) OSFforRAD 30/55

Classes
New-style classes

>>> class NewStyleClass (object) :
pass

>>> dir (NewStyleClass)

’ ’

__str__ ', '_ subclasshook__ ', ’'__ _weakref_ ']

[’ class__ ', ' delattr__ ", ' caeie__ 7, 7 doc__ ", ' format__ ', '
getattribute_ ', '__hash_’, ’/__init_’, ’'__module_ ', '_new__', '
reduce__ ', ' reduce_ex__ ', ' repr__ ', ' setattr__ ", ’ sizeof__ ',

’

@ Introduced in Python 2.2 to unify types and classes.
@ Always inherit directly either from object or a built-in type

@ In Python 3.x the explicit base class is not required (because
everything will subclass object).

@ Django uses mostly new-style classes.

MK, KB, T, TR (BUT) OSFforRAD

31/55

Class vs. class instance

>>> class A (object):

name = ‘class A’
>>> a = A()
>>> a.name
"class A’
>>> a.instance_name = ’instance a’
>>> a.instance_name
"instance a’
>>> a.name = ’instance a’
>>> A.name
'class A’
>>> a.name
"instance a’

@ Class attributes serve as default values for class instance
attributes

@ Class instances can have more attributes than their respective
classes!

MK, KB, T, TR (BUT) OSFforRAD

32/55

Classes
Methods

class Advanced (object) :
def _ init__ (self, name):
self.name = name
def Description() :
return 'This is an advanced class.’
Description = staticmethod (Description)
def ClassDescription(cls):
return 'This is advanced class: %$s’ % repr(cls)
ClassDescription = classmethod (ClassDescription)

@ Three types of methods:
e Instance methods (__init_)
e Static methods (Description)
o Class methods (ClassDescription)
@ Class methods and static methods require decorators (to be
presented later on)

MK, KB, T, TR (BUT) OSFforRAD

33/55

Classes
Methods

@ Instance methods always receive the instance as the first
argument (can acces all the attributes of both the instance and the

class).

@ Class methods always receive the class as the first argument (can
access all the attribute of the class only)

@ Static methods do not receive either the instance or the class
(cannot access either)

@ Class methods may be called using either an instance or a class

MK, KB, T, TR (BUT) OSFforRAD 34 /55

Control flow

Control flow |

MK, KB, T, TR (BUT) OSFforRAD 35/55

Truth value testing

@ Any object can be tested for truth value, for use inan if or while
condition or as operand of the Boolean operations. The following
values are considered false:

None

False

zero of any numeric type, e.g. 0, 0L, 0.0, 07

any empty sequence, e.g. 7, (), []

any empty mapping, e.g. {}

instances of user-defined classes, if the class defines a

_ nonzero__ () or__len__ () method, when that method

returns the integer zero or bool value False.

@ All other values are considered true

MK, KB, T, TR (BUT) OSFforRAD 36/55

Boolean operations

Operation | Result

Xory if x is false, then y, else x
X andy if x is false, then x, else y
not X if x is false, then True, else False

@ or is a short-circuit operator, evaluates the second argument only
if the first one is False

@ and is a short-circuit operator, evaluates the second argument
only if the first one is True

@ Note that or/and operations do not have to return only True or
False

MK, KB, T, TR (BUT) OSFforRAD 37/55

i1f statements

>>> x = int (raw_input ("Please enter an integer:
Please enter an integer: 42
>>> if x < 0:

x =0
o print ‘Negative changed to zero’
. elif x == 0:

o print ’Zero’

. elif x ==

o print ’Single’

. else:
print ’More’

More

"y

@ There can be zero or more elif parts
@ The else part is optional

MK, KB, T, TR (BUT) OSFforRAD

38/55

while statements

>>> a, b =0, 1

>>> while b < 1000:
print b,
a, b =Db, atb

112358 13 21 34 55 89 144 233 377 610 987

@ Nothing new here. ..

@ A trailing comma avoids the newline after the output.

MK, KB, T, TR (BUT) OSFforRAD

39/55

for statements

>>> # Measure some 1Ngs:
. a= ["cat’, "window’, ’defenestrate’]
>>> for x in a:
print x, len(x)
cat 3
window 6
defenestrate 12

@ Rather than always iterating over an arithmetic progression of
numbers (like in Pascal), or giving the user the ability to define
both the iteration step and halting condition (as C), Pythona™s
for statement iterates over the items of any sequence (a list or a
string), in the order that they appear in the sequence.

@ ltis not safe to modify the sequence being iterated over in the loop
(this can only happen for mutable sequence types, such as lists).

MK, KB, T, TR (BUT) OSFforRAD 40/55

Exceptions and exception handling

for arg in sys.argv[l:]:
try:

f = open(arg, r’)

except IOError:

print ’cannot open’, arg

else:
print arg, ’'has’, len(f.readlines()), ’lines’
f.close()

finally:

print "Finished with the file"

@ A try statement may have more than one except clause

@ If an exception occurs during execution of the t ry clause, the rest
of the clause is skipped, the respective except clause is
executed, and then execution continues after the t ry statement.

@ Thetry ... except statement has an optional else clause,
which, when present, must follow all except clauses. It is useful for
code that must be executed if the try clause does not raise an
exception.

B S I T A A P PN {mnomm

MK, KB, Tt, TR (BUT) 7 OSFforRAD

Advanced features

Advanced features]

MK, KB, T, TR (BUT) OSFforRAD 42 /55

Decorators: the concept

A decorator is usually a function that transforms another function:

def decorator_ function (target):

target.attribute = 1
return f

def target(a,b):
return a + b

#This is how we apply

target = decorator_function (target)

O VW ® Jd oG W N

=

In this simple case, the decorator just adds an attribute to the function
being decorated:

>>> target (1,2)

8

>>> target.attribute
1

MK, KB, T, TR (BUT) OSFforRAD 43 /55

Why use decorators?

@ We need to change functions and methods: to add
synchronisation, to add logging, etc

@ This was possible before, but changes had to be made in places
other than the declaration and could be hard to find later on

@ ltis reasonable to group them with the declaration of a function

@ Since Python 2.2 two decorators were added: classmethod and
staticmethod

@ Adding syntax has been difficult, as this should be rather simple,
not scarying for newcommers, give clear intent, and be clearly
visible

@ Java style decorators (decorator) were added in Python 2.4a2

MK, KB, T, TR (BUT) OSFforRAD 44 /55

Java-like syntax

Since Python 2.4a2, the code shown earlier can be rewritten as
follows:

def decorator_function (target) :
target.attribute = 1
return target

s> decorator. with he svntax ’@function name’

@decorator_function
def target(a,b):
return a + b

@ Note that decorator functions are called when they are applied,
not when the decorated function is called

@ Decrators can do many things (conditional function calling,
transforming arguments), but they are not really different from
what you’ve seen above

MK, KB, T, TR (BUT) OSFforRAD 45/55

Wrapper functions

def decorator (target):

1

2

3 def wrapper () :

4 print ‘Calling function "%s"’ % target._ name_
5 return target ()

6

7

8

wrapper.attribute
9 return wrapper

11 @decorator
12 def target():
13 print ‘I am the target function’

>>> target ()
Calling function "target"
I am the target function

>>> target.attribute
1

@ The wrapper function can do whatever it wants to the target

MK, KB, T, TR (BUT, OSFforRAD

46 /55

Decorators for functions that accept arguments

def decorator (target):

def wrapper (xargs, xxkwargs):
kwargs.update ({’debug’: True}) #

o

print ’‘Calling "%s" in debug mode’ % target._ name_

return target (xargs, xxkwargs)

wrapper.attribute = 1
return wrapper

@decorator

def target (a, b, debug=False):
if debug: print ’ [Debug] I am the target function’
return atb

>>> target (1,2)

Calling "target" in debug mode
[Debug] I am the target function
3

>>> target.attribute
1

MK, KB, T, TR (BUT, OSFforRAD

47 /55

Decorators for instance methods

A decorator for a class method should assume that the first argument
is always self:

def wrapper (self, xargs, xxkwargs):
Do something with ’self’

1

2 ometh
3 print self
4 return target (self, xargs, =*xkwargs)

Needless to say, an instance method can also be used as a decorator.

MK, KB, T, TR (BUT) OSFforRAD 48 /55

Decorators that accept arguments

def options(value) :
def decorator (target) :

Do something with the target fur ion
target.attribute = value
return target

return decorator

@options (’value’)
def target(a,b):
return a + b

O VW ® Jd oUW N

[y

>>> target (1,2)
>>> target (1,2)
3

>>> target.attribute
"value’

Since the decorator function is defined inside the options function,
it has access to any of the arguments passed to options.

MK, KB, T, TR (BUT) OSFforRAD 49 /55

lterators and Generators
Problem with lists

def pow2 (upto) :

THT Baicp - momw

powers = []
startat =1
startpower = 1

while startpower <= upto:
powers.append (startat)
startat *= 2
startpower += 1

return powers

for vv in pow2 (10) :
print vv

@ The list is stored entirely in the memory

@ Whant if we wanted to iterate over 10000000 (i.e., A LOT OF)
powers of two? (Python’s integer has infinite precision, btw.)

@ What if pow2 was much more complex and we wanted to use it in

many different places of code?
MK, KB, Tt, TR (BUT) OSFforRAD 50 /55

Understanding the for loop

@ The problem can be solved with while loops, but Pythonists do
not consider them elegant :)

@ Python supports a concept of iteration over containers,
implemented using two distinct mehods:

@ o container.__iter__ ():returnsan iterator object
@ iterator.__iter__():returnsthe iterator object itself
@ iterator.next (): return the next item from the container.

@ If a user-defined class has these two methods, it can be used in
for ...in. loops

MK, KB, T, TR (BUT) OSFforRAD 51/55

Generators

@ Python’s generators provide a convenient way to implement the
iterator protocol.

@ Using a yield expression in a function definition is sufficient to
cause that definition to create a generator function instead of a
normal function

@ yield returns the value (like a return) and suspends the
execution of the function

@ When a generator function is called, it returns an iterator known as
a generator

@ generator.next (): Starts the execution of a generator function
or resumes it at the last executed yield statement

MK, KB, T, TR (BUT) OSFforRAD 52/ 55

Generators

@ Let’s rewrite the pow2 function:

1 def pow2 (upto) :

2 "mr Returns a ge W
3 power of W

4 startat =1

5 startpower = 1

6 while startpower <= upto:
7 yield startat

8 startat x= 2

9 startpower += 1

10

11 for vv in pow2 (10) :

12 print vv

@ NOTE: return can be used within a generator function, but only

without a value. Signals the end of the sequence.

MK, KB, T, TR (BUT) OSFforRAD

53/55

Generator expressions

Simple generators coded like list comprehensions, with parentheses
instead of brackets.

>>> sum(ixi for i in range (10)) # sum of squares
285

>>> xvec = [10, 20, 30]

>>> yvec = [7, 5, 3]

>>> sum(x+xy for x,y in zip (xvec, yvec)) # dot product
260

More compact but less versatile than full generator definitions. Tend to
be more memory friendly than equivalent list comprehensions.

MK, KB, T, TR (BUT) OSFforRAD 54 /55

Sources

@ http:/diveintopython.org/ by Mark Pilgrim

@ http://www.siafoo.net/article/68 by David (?) - a nice article on
decorators

@ http://www.python.org
° ...

MK, KB, T, TR (BUT) OSFforRAD 55/55

	What is Python?
	Programming philosophy
	Properties
	Uses

	Basics
	Coding style
	Native datatypes
	The power of introspection

	Functions and classes
	Functions
	Classes

	Control flow
	Advanced features
	Decorators
	Iterators and Generators

