
Open Source Frameworks for Rapid Application
Development

Marek Krętowski
Krzysztof Bandurski, Tomasz Łukaszuk, Tomasz Rybak

Software Departament
Faculty of Computer Science

Bialystok University of Technology

m.kretowski@pb.edu.pl
k.bandurski@pb.edu.pl, t.lukaszuk@pb.edu.pl, t.rybak@pb.edu.pl

Lecture topic
Configuration and conventions in Django

MK, KB, TŁ, TR (BUT) OSFforRAD 1 / 22

Configuration and conventions in Django: Table of
content

1 Introduction

2 Project files

3 Django applications

4 References

MK, KB, TŁ, TR (BUT) OSFforRAD 2 / 22

Introduction

Introduction

MK, KB, TŁ, TR (BUT) OSFforRAD 3 / 22

Introduction

General

A high-level Python Web framework that encourages rapid
development and clean, pragmatic design
Follows the Model-View-Controller (MVC) architectural pattern,
but Django’s “view” corresponds to controller, whereas Django’s
“template” corresponds to view - read more in Django FAQ.
Originally developed to manage several news-oriented sites for
The World Company of Lawrence, Kansas
Released publicly under a BSD license in July 2005
Named after gypsy jazz guitarist Django Reinhardt
Since June 2008 managed by Django Software Foundation
Latest release: 1.3.1

MK, KB, TŁ, TR (BUT) OSFforRAD 4 / 22

Introduction

Components

A lightweight, standalone web server for development and testing
A form serialization and validation system.
A caching framework which can use any of several cache
methods.
Support for middleware classes which can intervene at various
stages of request processing.
An internal dispatcher system which allows components of an
application to communicate events to each other via pre-defined
signals.
An internationalization system.
A serialization system which can produce and read XML and/or
JSON representations of Django model instances.
A system for extending the capabilities of the template engine.
An interface to Python’s built-in unit test framework.

MK, KB, TŁ, TR (BUT) OSFforRAD 5 / 22

Introduction

Loose coupling

Loose coupling means that individual components of Django’s feature
stack are kept as separate as possible. For example:

Django templating language makes it very pleasant to represent
the contents of your models, but its equally easy to use Django’s
templating language to represent other kinds of Python objects as
well.
If you don’t like Django’s templating language, you can use
replace it with e.g. Jinja2
The Django ORM makes it easy to setup and access a database,
but it possible to use SQLAlchemy instead.

If you prefer to use tools other than those provided with Django, you
can use them.

While Django will let you make decisions, it will rarely make you make
a decision.

MK, KB, TŁ, TR (BUT) OSFforRAD 6 / 22

Introduction

Installation

install Python
install a database server (PostgreSQL, MySQL, Oracle or SQLite)
and relevant Python bindings
install Django

from source: download and extract Django-NNN.tar.gz, then
setup.py install
using apt (Linux): apt-get install Django
using yum (Linux): yum install Django

MK, KB, TŁ, TR (BUT) OSFforRAD 7 / 22

Introduction

Starting a project

1 $ django-admin startproject mysite

A project is a directory (here: mysite) containing a collection of
settings for an instance of Django, including database
configuration, Django-specific options and application-specific
settings.
A project can use any number of Django applications.
Contents of mysite:

__init__.py: An empty file that tells Python that this directory should be
considered a Python package.
manage.py: A command-line utility that lets you interact with this Django
project in various ways.
settings.py: Settings/configuration for this Django project.
urls.py: The URL declarations for this Django project; a "table of
contents" of your Django-powered site.

MK, KB, TŁ, TR (BUT) OSFforRAD 8 / 22

Project files

Project files

MK, KB, TŁ, TR (BUT) OSFforRAD 9 / 22

Project files

Administration: django-admin.py and manage.py

Usage:
1 django-admin.py <subcommand> [options]
2 manage.py <subcommand> [options]

django-admin.py is Django’s command-line utility for
administrative tasks.
manage.py is a thin wrapper around django-admin.py

puts your project’s package on sys.path.
sets the DJANGO_SETTINGS_MODULE environment variable so that it
points to your project’s settings.py file.

subcommand tells the script what to do. Examples:
syncdb: Creates the database tables for all apps used in the project.
shell: Sets up the the project’s environment and starts the Python
interactive interpreter

Applications can register their own actions with manage.py
When working on a single Django project, it’s easier to use
manage.py

MK, KB, TŁ, TR (BUT) OSFforRAD 10 / 22

Project files

Project settings: settings.py

settings.py is a Python module that contains all the configuration of
your Django project.
Using settings in Python code:
1 from django.conf import settings
2

3 if settings.DEBUG:
4 # Do something

Important notes:
Always use settings by importing the object
django.conf.settings

Do not alter settings at runtime
ALWAYS protect your settings.py file from unauthorized access!
names used in settings are relative to os.path, i.e., the
PYTHONPATH environment variable

MK, KB, TŁ, TR (BUT) OSFforRAD 11 / 22

Project files

Basic settings

DATABASES: ENGINE, HOST, NAME, etc.: define databases
backend settings
INSTALLED_APPS: Django apps that are used in your project
MIDDLEWARE_CLASSES: middleware classes that process every
request
ROOT_URLCONF: the root url.py file of your project
TEMPLATE_DIRS: absolute locations of the template source files,
in search order. Always use unix-style forward slashes, even on
Windows

There are MANY more, but luckily Django provides defaults.

MK, KB, TŁ, TR (BUT) OSFforRAD 12 / 22

Django applications

Django applications

MK, KB, TŁ, TR (BUT) OSFforRAD 13 / 22

Django applications

Django applications

Creating a Django application:
1 $ django-admin startapp myapp

or
1 $./manage.py startapp myapp

Django apps can live anywhere in the filesystem, but must be
reachable from os.path.
Contents of myapp:

__init__.py: An empty file that tells Python that this directory should be
considered a Python package.
models.py: This is where you define models for the application.
tests.py: Tests that will be run when manage.py test is invoked.
views.py: View functions used by the application.

MK, KB, TŁ, TR (BUT) OSFforRAD 14 / 22

Django applications

Django’s views

In Django, a view is a function/method that takes at least one
argument: the request
A view should return a HttpResponse object
View functions are usually defined in the application’s views.py

1 from django.http import HttpResponse
2

3 def hello_world_view(request):
4 return HttpResponse(’Hello, world!’)

Rather than hooking a view directly into the project’s urls.py, an
application should define its own urls.py

1 from django.conf.urls.defaults import *
2 urlpatterns = patterns(’mysite.myapp.views’,
3 (r’^hello_world/$’, ’hello_world_view’),
4)

MK, KB, TŁ, TR (BUT) OSFforRAD 15 / 22

Django applications

Project urls vs. app urls

The urls defined in myapp/urls.py can be included in the project’s
urls.py as follows:
1 from django.conf.urls.defaults import *
2

3 # Uncomment the next two lines to enable the admin:
4 from django.contrib import admin
5 admin.autodiscover()
6

7 urlpatterns = patterns(’’,
8 # Note how we include the urls defined for myapp:
9 (r’^mysite/’, include(’mysite.myapp.urls’)),

10

11 # Uncomment the next line to enable the admin:
12 (r’^admin/’, include(admin.site.urls)),
13)

This allows to easily “plug” applications into various sites. Note the
difference between the two includes (quotation marks)!

MK, KB, TŁ, TR (BUT) OSFforRAD 16 / 22

Django applications

Activating Django applications

To activate a Django application in a Django project, just add it to the
INSTALLED_APPS setting:
1 INSTALLED_APPS = (
2 ’django.contrib.auth’,
3 ’django.contrib.contenttypes’,
4 ’django.contrib.sessions’,
5 ’django.contrib.sites’,
6 ’mysite.myapp’
7)

NOTE: here, the application was created inside the project directory.

Django apps are "pluggable": You can use an app in multiple projects,
and you can distribute apps, because they don’t have to be tied to a
given Django project.

MK, KB, TŁ, TR (BUT) OSFforRAD 17 / 22

Django applications

Applications bundled with Django

django.contrib.auth: An extensible authentication system
django.contrib.admin: The dynamic administrative interface.
django.contrib.comments A flexible commenting system.
django.contrib.sites A sites framework that allows one
Django installation to run multiple websites, each with their own
content and applications
django.contrib.sitemaps: Tools for generating Google
Sitemaps.
django.contrib.csrf.middleware.CsrfMiddleware:
Tools for preventing cross-site request forgery.
django.contrib.flatpages: An app for storing simple “flat”
HTML content.
. . . and more.

MK, KB, TŁ, TR (BUT) OSFforRAD 18 / 22

Django applications

Middleware

Middleware is a framework of hooks into Django’s request/response
processing. It’s a light, low-level ’plugin’ system for globally altering
Django’s input and/or output

Activating middleware:
1 MIDDLEWARE_CLASSES = (
2 ’django.middleware.common.CommonMiddleware’,
3 ’django.contrib.sessions.middleware.SessionMiddleware’,
4 ’django.contrib.auth.middleware.AuthenticationMiddleware’,
5)

Django applies middleware in the order it’s defined in
MIDDLEWARE_CLASSES, top-down. During the response phases the
classes are applied in reverse order, from the bottom up.

Middleware classes don’t have to subclass anything.
The middleware class can live anywhere on your Python path.

MK, KB, TŁ, TR (BUT) OSFforRAD 19 / 22

Django applications

Middleware ctd.

Middleware is like an onion: each
middleware class is a "layer" that
wraps the view.
Each middleware component is a
single Python class that defines
one or more of the following
methods:

process_request

process_view

process_response

process_response

process_exception

MK, KB, TŁ, TR (BUT) OSFforRAD 20 / 22

Django applications

Custom django-admin commands

Applications can register their own actions with manage.py.
A custom action should be defined as a Python module placed in
the management/commands directory of an app.
Each Python module in that directory will be auto-discovered and
registered as a command that can be executed as an action when
you run manage.py

If we place custom.py with the following code in the myapp
directory. . .
1 from django.core.management.base import NoArgsCommand
2 class Command(NoArgsCommand):
3 def handle_noargs(self, **options):
4 print ’Executing custom command...’
5 # command code follows...

. . . then ./manage.py custom will print:
1 Executing custom command...

and execute the code defined in the handle_noargs method.
MK, KB, TŁ, TR (BUT) OSFforRAD 21 / 22

References

References

http://en.wikipedia.org/wiki/Django_(web_framework)
Django docs - http://docs.djangoproject.com/en/dev/

MK, KB, TŁ, TR (BUT) OSFforRAD 22 / 22

	Introduction

