
Open Source Frameworks for Rapid Application
Development

Marek Krętowski
Krzysztof Bandurski, Tomasz Łukaszuk, Tomasz Rybak

Software Departament
Faculty of Computer Science

Bialystok University of Technology

m.kretowski@pb.edu.pl
k.bandurski@pb.edu.pl, t.lukaszuk@pb.edu.pl, t.rybak@pb.edu.pl

Lecture topic
Ruby

MK, KB, TŁ, TR (BUT) OSFforRAD 1 / 60



Ruby: Table of content

1 Introduction

2 Ruby base

3 Examples

4 Additional informations

MK, KB, TŁ, TR (BUT) OSFforRAD 2 / 60



Introduction

Introduction

MK, KB, TŁ, TR (BUT) OSFforRAD 3 / 60



Introduction

Introduction

Ruby
is a dynamic, reflective, object-oriented programming
language
is based on Perl, Smalltalk, Eiffel, Ada, and Lisp
combines syntax inspired by Perl with Smalltalk-like
features
supports multiple programming paradigms, including
functional, object oriented, imperative and reflective, has a
dynamic type system and automatic memory management
the standard 1.8.7 implementation is written in C, as a
single-pass interpreted language
there is currently no specification of the Ruby language,
implementations of the Ruby language: YARV, JRuby,
Rubinius, IronRuby, MacRuby and HotRuby, each of them
takes a different approach

MK, KB, TŁ, TR (BUT) OSFforRAD 4 / 60



Introduction

History I

February 24, 1993 - Ruby was conceived by Yukihiro Matsumoto
as new language that balanced functional programming with
imperative programming

Yukihiro Matsumoto

"I wanted a scripting language that was more powerful than
Perl, and more object-oriented than Python. That’s why I
decided to design my own language"

MK, KB, TŁ, TR (BUT) OSFforRAD 5 / 60



Introduction

History II

December 21, 1995 - the first public release of Ruby 0.95

December, 1995 - the Japanese language ruby-list mailing list

December 25, 1996 - Ruby version 1.0

1999 - the first English language mailing list ruby-talk

September, 2000 - the first English language book ”Programming
Ruby”

now - the current stable version is 1.9.2.

MK, KB, TŁ, TR (BUT) OSFforRAD 6 / 60



Introduction

Features I

Thoroughly object-oriented with inheritance, mixins and
metaclasses
Dynamic typing and Duck typing
Everything is an expression (even statements) and everything is
executed imperatively (even declarations)
Succinct and flexible syntax that minimizes syntactic noise
Dynamic reflection and alteration of objects to facilitate
metaprogramming
Lexical closures, iterators and generators, with a unique block
syntax
Literal notation for arrays, hashes, regular expressions and
symbols
Embedding code in strings (interpolation)

MK, KB, TŁ, TR (BUT) OSFforRAD 7 / 60



Introduction

Features II

Keyword arguments and default arguments
Four levels of variable scope (global, class, instance, and local)
denoted by sigils and capitalization
Automatic garbage collection
First-class continuations
Strict boolean coercion rules (everything is true except false
and nil)
Exception handling
Operator overloading
Built-in support for rational numbers, complex numbers and
arbitrary-precision arithmetic
Custom dispatch behavior (through method missing and
const missing)

MK, KB, TŁ, TR (BUT) OSFforRAD 8 / 60



Introduction

Features III

Native threads and cooperative fibers

Full support for Unicode and multiple character encodings (as of
version 1.9)

Native extension API in C

Interactive Ruby Shell (a REPL)

Centralized package management through RubyGems

Implemented on all major platforms

Large standard library

MK, KB, TŁ, TR (BUT) OSFforRAD 9 / 60



Introduction

Semantics

Ruby:
is object-oriented language (every data type is an object, even
integers, booleans, and nil, every function is a method)
supports inheritance with dynamic dispatch, mixins and singleton
methods
though it does not support multiple inheritance, classes can
import modules as mixins
supports procedural syntax, but all methods defined outside of the
scope of a particular object are actually methods of the Object
class
has been described as a multi-paradigm programming language
(procedural programming, object orientation, functional
programming)
has support for introspection, reflection and metaprogramming
interpreter-based threads
dynamic-typing
parametric polymorphismMK, KB, TŁ, TR (BUT) OSFforRAD 10 / 60



Introduction

Syntax I

Ruby syntax:
broadly similar to Perl and Python
class and method definitions are signaled by keywords
class ... end, def ... end

variables are not obligatorily prefixed with a sigil; when used, the
sigil changes the semantics of scope of the variable
$ is prefixed to global variables
@ is prefixed to instance variables
@@ is prefixed to class variables

keywords are typically used to define logical code blocks, without
braces (i.e., pair of { and })
there is no distinction between expressions and statements
line breaks are significant and taken as the end of a statement (a
semicolon may be equivalently used)

MK, KB, TŁ, TR (BUT) OSFforRAD 11 / 60



Introduction

Syntax II

indentation is not significant

Ruby keeps all of its instance variables completely private to the
class and only exposes them through accessor methods
(attr writer, attr reader, etc), accessor methods in Ruby are
created with a single line of code via metaprogramming, invocation
of these methods does not require the use of parentheses

MK, KB, TŁ, TR (BUT) OSFforRAD 12 / 60



Introduction

Deviations from behaviour elsewhere I

99.0 == 99.to f
to denote a floating point without a decimal component, one must follow with a
zero digit or an explicit conversion

2.5.round gives 3, 3.5.round gives 4, -3.5.round gives -4
round to nearest integer, halfway cases away from zero

0 ? 1 : 0 evaluates to 1
all numbers evaluate to true, only nil and false evaluate to false

"abc"[0] yields 97
to obtain "a" use "abc"[0,1] (a substring of length 1) or "abc"[0].chr

statement until expression
is syntactic sugar over
until expression; statement; end
so it never runs the statement if the expression is already true
is equivalent to while (!(expression)) { statement; } in C/C++

MK, KB, TŁ, TR (BUT) OSFforRAD 13 / 60



Introduction

Deviations from behaviour elsewhere II

statement if expression
is an equivalent to
if (expression) { statement; }

operators and and or for conditional expressions: and does not
bind tighter than or
Ruby also has expression operators || and && which work as expected

MK, KB, TŁ, TR (BUT) OSFforRAD 14 / 60



Introduction

Interaction

irb - Interactive Ruby Shell, an interactive command-line interpreter
which can be used to test code quickly, the Ruby official distribution
also includes "irb"

1 $ irb
2 irb(main):001:0> puts "Hello, World"
3 Hello, World
4 => nil
5 irb(main):002:0> 1+2
6 => 3

MK, KB, TŁ, TR (BUT) OSFforRAD 15 / 60



Ruby base

Ruby base

MK, KB, TŁ, TR (BUT) OSFforRAD 16 / 60



Ruby base

Object-oriented programming language

Everything is an object ... even nil, even class (instance of
Class class)
Object is the default superclass
Everything is an expression and returns the value
Everything except nil and false is true

MK, KB, TŁ, TR (BUT) OSFforRAD 17 / 60



Ruby base

Variables and constants

variables: begins with a small letter or the character _, words
separated by _
my_variable, _var
constants: begins with a big letter, best in full capitals
MY_CONSTANT

global variables: begins with the $
$global_variable

symbols: begins with the :
:my_symbol

1 f1,f2 = :ruby,:ruby
2 f1.object_id
3 f2.object_id #the same object
4

5 f1,f2 = "ruby","ruby"
6 f1.object_id
7 f2.object_id #two different objects

MK, KB, TŁ, TR (BUT) OSFforRAD 18 / 60



Ruby base

Comments

One-line comment
1 #one-line comment

Multiline comment
1 =begin
2 multiline comment
3 multiline comment
4 multiline comment
5 =end

MK, KB, TŁ, TR (BUT) OSFforRAD 19 / 60



Ruby base

Operators

arithmetic: + - * / % **
assignment: = += -= *= /= %= **= |= &= >>= <<= ||=
&&=
comparison: == .eql? .equal? === != < > >= <= <=>
=∼ !∼
logical: && || ! and or not
bitwise: ∼ | & ˆ << >>
other: [] []= .. ... ! not

1 5 == 5.0 # => true
2 5.eql? 5.0 # => false, (the same type and value)
3 5.equal? 5.0 # => false, (the same object_id)
4 5.equal? 5 # => true, (for fixnums and symbols)
5

6 a = false or 5 # => 5, a == false
7 a = false || 5 # => 5, a == 5
8

9 a, b = b, a
10 a, b, c = get_something()

MK, KB, TŁ, TR (BUT) OSFforRAD 20 / 60



Ruby base

Conditional statements

if ... [then|:] ... [elsif ...] [else ...]
end

... if ...

unless = if not

... ? ... : ...

case ... when ... [else ...] end

1 x = if a > 100
2 5000
3 elsif a > 5
4 5
5 else
6 1
7 end
8

9 puts "Hello" if a > 100

1 x = case x
2 when 0...5
3 1
4 when 5..100
5 50
6 else
7 10**9
8 end

MK, KB, TŁ, TR (BUT) OSFforRAD 21 / 60



Ruby base

Loops

while ... [do] ... end

... while ...

until = while not

for ... in ... [do] ... end

break, next, redo, retry
times, upto, downto

1 while a > 10
2 a /= 3
3 end
4

5 puts "Iteration #{i+=1}" while i < 10
6

7 for i in 1..8
8 puts i
9 end

MK, KB, TŁ, TR (BUT) OSFforRAD 22 / 60



Ruby base

Functions (or methods)

invoke function:
my function or my function()
invoke with arguments:
my function a, b, c or my function(a, b, c)
invoke using the return value:
a = my function(a, b, c); puts my function(a, b,
c)
defining

1 def my_function(a, b, c)
2 do_something
3 statement_return_sth
4 end

default arguments:
def my function(a, b = true) ...
list of arguments:
def my function(a, *other args) ...

MK, KB, TŁ, TR (BUT) OSFforRAD 23 / 60



Ruby base

Functions (or methods)

Bang methods
ends with !
potentially dangerous
modify the object
may have non-modify counterparts producing new objects
e.g. sort!, upcase!, reverse!

Asking methods
ends with ?
usualy returns true or false
e.g. empty?, include?, nil?

MK, KB, TŁ, TR (BUT) OSFforRAD 24 / 60



Ruby base

Classes

defining class ... end

name begins with a big letter - CamelCase
initialize method - constructor
inspect method - <anObject:0x83678>
to_s method
instance variables - begins with @, e.g. @inst_variable
class variables - begins with @@, e.g. @@class_variable
accessors - attr reader, attr writer, attr accessor

instance method - def method name ... end

class method - def self.method name ... end

levels of access methods: public, protected, private
method missing

MK, KB, TŁ, TR (BUT) OSFforRAD 25 / 60



Ruby base

Classes

1 class MyClass
2 attr_reader :value
3 def initialize(value)
4 @value = value
5 end
6 private
7 def introduce
8 "My value is #{@value}"
9 end
10 public
11 def self.public_method(arg)
12 ...
13 end
14 def inspect
15 "My id is #{object_id}"
16 end
17 def to_s
18 "My type is #{self.class}"
19 end
20 def method_missing(method_id)
21 puts "No method #{method_id}!"
22 end
23 end

24 a = MyClass.new(3)
25

26 puts a.introduce
27 # No method introduce
28

29 p a
30 # My id is 54765890
31

32 puts a
33 # My type is MyClass
34

35 puts a.b
36 # No method b

MK, KB, TŁ, TR (BUT) OSFforRAD 26 / 60



Ruby base

Classes - Inheritance

only one-base
Object - root
self

super

1 class MyClass
2 def introduce_yourself
3 puts "My name is " + self.class.to_s
4 end
5 end
6

7 class YourClass < MyClass
8 def introduce_yourself
9 super
10 puts "Something from YourClass"
11 end
12 def to_s
13 "YourClass"
14 end
15 end

MK, KB, TŁ, TR (BUT) OSFforRAD 27 / 60



Ruby base

Modules and mixins

Modules create namespace
may be included in another module or class - include
it is possible to include more than one module (without a
hierarchy)

1 module A
2 def a1
3 puts ’a1 is called’
4 end
5 end
6 module B
7 def b2
8 puts ’b2 is called’
9 end

10 end
11 module C
12 def c3
13 puts ’c3 is called’
14 end
15 end

16 class Test
17 include A
18 include B
19 include C
20 def display
21 puts ’included modules’
22 end
23 end
24 object=Test.new
25 object.display
26 object.a1
27 object.b2
28 object.c3
29 # included modules
30 # a1 is called
31 # b2 is called
32 # c3 is called

MK, KB, TŁ, TR (BUT) OSFforRAD 28 / 60



Ruby base

Blocks

do ... end

{ ... }

are passed to the function
yield

1 10.times do |i|
2 puts i
3 end
4

5 10.times {|i| puts i}
6

7 def give_me_something
8 sth = rand.to_s
9 yield(sth)
10 end
11 give_me_something { |x| puts "I’ve got #{x}" }

MK, KB, TŁ, TR (BUT) OSFforRAD 29 / 60



Ruby base

Lambda expressions

blocks are not objects, but they can be; class Proc
methods lambda and proc

methods can not be passed to other methods, but you can pass
objects of Proc class
method can not return an other method, but may return an object
of Proc class

1 hey = lambda { print "hey" }
2 hello = proc do
3 print "hello"
4 end
5

6 hey.call # => hey
7 hello.call # => hello
8 hey.class # => Proc
9 hello.class # => Proc

1 p = lambda { |text| print text }
2 p.call("Hop") # => Hop
3

4 def repeat(how_many, what)
5 while how_many > 0
6 what.call(how_many)
7 how_many -= 1
8 end
9 end

10 l = lambda { |x| print x }
11 repeat(3, l) # => 321

MK, KB, TŁ, TR (BUT) OSFforRAD 30 / 60



Ruby base

Exceptions

1 begin
2 # Do something
3 rescue
4 # Handle exception
5 else
6 # Do this if no exception was raised
7 ensure
8 # Do this whether or not an exception was raised
9 end
10

11 age = 18
12 raise "Must be 65 or older for Medicare." if age < 66

MK, KB, TŁ, TR (BUT) OSFforRAD 31 / 60



Ruby base

Built-in types

numbers: Integer, Fixnum, Bignum, Float, Rational
7, 1245, -45.0

strings
"string example", ’other example’

ranges
(4..34)

arrays
[3, 6, "text", [’a’, 78]]

hashes
{ :water => ’wet’, :fire => ’hot’, :iron =>
’cold’ }

regular expressions
/regex*/

MK, KB, TŁ, TR (BUT) OSFforRAD 32 / 60



Examples

Examples

MK, KB, TŁ, TR (BUT) OSFforRAD 33 / 60



Examples

Hello world

Listing 1: hello.rb
1 #!/usr/bin/ruby
2 print "Hello World\n"

Listing 2: run in a Ruby shell irb
1 puts "Hello World!"

MK, KB, TŁ, TR (BUT) OSFforRAD 34 / 60



Examples

Some basic Ruby code

1 # Everything, including a literal, is an object, so this works:
2

3 -199.abs
4 # 199
5

6 "ruby is cool".length
7 # 12
8

9 "Your mother is nice.".index("u")
10 # 2
11

12 "Nice Day Isn’t It?".downcase.split("").uniq.sort.join
13 # " ’?acdeinsty’

MK, KB, TŁ, TR (BUT) OSFforRAD 35 / 60



Examples

Terminal IO

1 #!/usr/bin/ruby
2 print "This is the first half of Line 1. "
3 print "This is the second half.", "\n"
4 puts "This is line 2, no newline necessary."
5

6 printf "There were %7d people at the %s.\n", 439, "Auditorium"
7

8 print "Name please=>"
9 name = gets
10 print "Your name is ", name, "\n"

This is the first half of Line 1. This is the second half.
This is line 2, no newline necessary.

There were 439 people at the Auditorium.

Name please=>Jon Green
Your name is Jon Green

MK, KB, TŁ, TR (BUT) OSFforRAD 36 / 60



Examples

Strings

1 a = "\nThis is a double quoted string\n"
2 a = %{\nThis is a double quoted string\n}
3 a = %Q{\nThis is a double quoted string\n}
4 a = <<BLOCK
5

6 This is a multi-line double quoted string
7 BLOCK
8 a = %/\nThis is a double quoted string\n/
9

10 a = ’This is a single quoted string’
11 a = %q{This is a single quoted string}

MK, KB, TŁ, TR (BUT) OSFforRAD 37 / 60



Examples

Strings

string assignment and concatination
1 #!/usr/bin/ruby
2 myname = "Jon Green"
3 myname_copy = myname
4 print "myname = ", myname, "\n"
5 print "myname_copy = ", myname_copy, "\n"
6 print "\n=========================\n"
7 myname << "-Red"
8 print "myname = ", myname, "\n"
9 print "myname_copy = ", myname_copy, "\n"

the double less than sign (<<) is a Ruby String overload for
concatination
myname = Jon Green
myname_copy = Jon Green

=========================
myname = Jon Green-Red
myname_copy = Jon Green-Red

MK, KB, TŁ, TR (BUT) OSFforRAD 38 / 60



Examples

Strings

the String.new() method
1 #!/usr/bin/ruby
2 myname = "Jon Green"
3 myname_copy = String.new(myname) # <--------------
4 print "myname = ", myname, "\n"
5 print "myname_copy = ", myname_copy, "\n"
6 print "\n=========================\n"
7 myname << "-Red"
8 print "myname = ", myname, "\n"
9 print "myname_copy = ", myname_copy, "\n"

myname = Jon Green
myname_copy = Jon Green

=========================
myname = Jon Green-Red
myname_copy = Jon Green

MK, KB, TŁ, TR (BUT) OSFforRAD 39 / 60



Examples

Strings

the Ruby String class works like an array of characters
1 #!/usr/bin/ruby
2 myname = "Jon was here"
3 print myname[6, 3], "\n"
4 myname[6, 3] = "is"
5 print myname, "\n"

was
Jon is here

MK, KB, TŁ, TR (BUT) OSFforRAD 40 / 60



Examples

Strings
- the addition (+) sign means to add strings together (strings concatenation)
- the multiplication (*) sign means string together multiple copies
- the % method works like the sprintf() command in C
- strings comparision with <=>

1 mystring = "Jon" + " " + "was" + " " + "here"
2 print mystring, "\n"
3 mystring = "Cool " * 3
4 print mystring, "\n"
5 mystring = "There are %6d people in %s" % [1500, "the Ballroom"]
6 print mystring, "\n"
7 print "frank" <=> "frank", "\n"
8 print "frank" <=> "fred", "\n"
9 print "frank" <=> "FRANK", "\n"

Jon was here
Cool Cool Cool
There are 1500 people in the Ballroom
0
-1
1

MK, KB, TŁ, TR (BUT) OSFforRAD 41 / 60



Examples

Loops

The elipses (...) indicate the range through which to loop. The for is
terminated by an end. You don’t need braces for a loop.

1 for ss in 1...5
2 print ss, " hello\n";
3 end

1 hello
2 hello
3 hello
4 hello

The 1...5 means 1 TO BUT NOT INCLUDING 5
The 1..5 means 1 through 5

MK, KB, TŁ, TR (BUT) OSFforRAD 42 / 60



Examples

Loops

1 presidents = ["Ford","Carter","Reagan","Bush1","Clinton","Bush2"]
2 for ss in 0...presidents.length
3 print ss, ": ", presidents[ss], "\n";
4 end

0: Ford
1: Carter
2: Reagan
3: Bush1
4: Clinton
5: Bush2

Backwards iteration doesn’t work in Ruby – it must iterate up.
1 presidents = ["Ford","Carter","Reagan","Bush1","Clinton","Bush2"]
2 for ss in 0...presidents.length
3 print ss, ": ", presidents[-ss-1], "\n";
4 end

array[-1] is the last item, array[-2] is the second to last, etc.

MK, KB, TŁ, TR (BUT) OSFforRAD 43 / 60



Examples

Loops

while loops
1 #!/usr/bin/ruby
2 ss = 4
3 while ss > 0
4 puts ss
5 ss -= 1
6 end
7 puts "======================"
8 while ss < 5
9 puts ss
10 ss += 1
11 break if ss > 2
12 end

4
3
2
1
======================
0
1
2

MK, KB, TŁ, TR (BUT) OSFforRAD 44 / 60



Examples

Iterators and blocks

Another way to loop through an array is to use an iterator (each) and a
block ({|prez| puts prez}).

1 presidents = ["Ford","Carter","Reagan","Bush1","Clinton","Bush2"]
2 presidents.each {|prez| puts prez}
3

4 (1..5).each do |i|
5 puts i
6 end

Ford
Carter
Reagan
Bush1
Clinton
Bush2
1
2
3
4
5

MK, KB, TŁ, TR (BUT) OSFforRAD 45 / 60



Examples

Iterators and blocks

The examples of other ruby iterators:
1 [1, 2, 3].collect { |element| element + 1} #=> [2, 3, 4]
2

3 a = [1, 2, 3] #=> [1, 2, 3]
4 a.collect! { |element| element + 1 } #=> [2, 3, 4]
5 a #=> [2, 3, 4]
6

7 [1, 2, 3, 4, 5, 6].delete_if { |i| i%2 == 0 } # => [1, 3, 5]
8

9 (36..100).detect { |i| i%7 == 0 } #=> 42
10

11 9.downto(0) { |i| print i } #=> 9876543210
12

13 [3, 6, -5].each_index { |i| print i.to_s + " " } #=> 0 1 2
14

15 (0..30).find_all { |i| i%9 == 0 } #=> [0, 9, 18, 27]
16

17 (1..6).partition { |i| i%2 == 0 } #=> [[2, 4, 6], [1, 3, 5]]
18

19 5.times { |i| print "#{i} "} #=> 0 1 2 3 4
20

21 1.upto(3) { |i| print i } #=> 123

MK, KB, TŁ, TR (BUT) OSFforRAD 46 / 60



Examples

Closures

The closure is a block of code passed to the method.
1 3.times { print "Bla" } #=> BlaBlaBla
2

3 class Fixnum
4 def times
5 for i in (1...self)
6 yield i
7 end
8 end
9 end

MK, KB, TŁ, TR (BUT) OSFforRAD 47 / 60



Examples

Branching

1 democrats = ["Carter", "Clinton"]
2 republicans = ["Ford", "Reagan", "Bush1", "Bush2"]
3 party = ARGV[0]
4 if party == nil
5 print "Argument must be \"democrats\" or \"republicans\""
6 elsif party == "democrats"
7 democrats.each { |i| print i, " "}
8 elsif party == "republicans"
9 republicans.each { |i| print i, " "}
10 else
11 print "All presidents were either Democrats or Republicans"
12 end
13 #-------------------------------------------------------------
14 if party != nil
15 democrats.each { |i| print i, " "} if party == "democrats"
16 republicans.each { |i| print i, " "} if party == "republicans"
17 print "All presidents were either Democrats or Republicans"\
18 if (party != "democrats" && party != "republicans")
19 end

The if keyword must be on the same line as the action
Only a single action can precede the if keyword

MK, KB, TŁ, TR (BUT) OSFforRAD 48 / 60



Examples

Collections

Constructing and using an array
1 a = [1, ’hi’, 3.14, 1, 2, [4, 5]]
2

3 a[2] # 3.14
4 a.[](2) # 3.14
5 a.reverse # [[4, 5], 2, 1, 3.14, "hi", 1]
6 a.flatten.uniq # [1, "hi", 3.14, 2, 4, 5]
7 a.pop # [4, 5]
8 a # [1, "hi", 3.14, 1, 2]
9 a.push(’seven’) # [1, "hi", 3.14, 1, 2, "seven"]
10 a.shift(2) # [1, "hi"]
11 a # [3.14, 1, 2, "seven"]
12 a.unshift(4, ’abc’) # [4, "abc", 3.14, 1, 2, "seven"]
13 a[1..3] # ["abc", 3.14, 1]
14 a[2,4] # [3.14, 1, 2, "seven"]
15 a[2,3] = [] # []
16 a # [4, "abc", "seven"]

MK, KB, TŁ, TR (BUT) OSFforRAD 49 / 60



Examples

Collections

Constructing and using an associative array (called hashes in Ruby)
1 hash = { :water => ’wet’, :fire => ’hot’, :iron => ’cold’ }
2

3 hash[:fire] # "hot"
4

5 hash.each do |key, value|
6 puts "#{key} is #{value}"
7 end
8 # water is wet
9 # fire is hot
10

11 hash.select {|key,value| value!=’hot’}
12 # [[:water, "wet"], [:iron, "cold"]]
13 hash.delete :water
14 # {:fire => "hot", :iron => "cold"}
15 hash.delete_if {|key,value| value==’hot’}
16 # {:iron => "cold"}

MK, KB, TŁ, TR (BUT) OSFforRAD 50 / 60



Examples

Regular Expressions

1 string1 = "Ruby regular expressions"
2 print "yes" if string1 =~ /r.*l/ # yes
3 print "yes" if string1 !~ /e.*z/ # yes
4 print "yes" if string1 =~ /^[A-Z]/ # yes
5

6 string1 = "I will drill for a well in walla walla washington."
7 regex = Regexp.new(/w.ll/)
8 matchdata = regex.match(string1)
9 while matchdata != nil
10 puts matchdata[0]
11 string1 = matchdata.post_match
12 matchdata = regex.match(string1)
13 end
14 # will
15 # well
16 # wall
17 # wall
18

19 string1 = "I will drill for a well in walla walla washington."
20 string1.gsub!(/(w.ll)/){$1.upcase}
21 # I WILL drill for a WELL in WALLa WALLa washington.

MK, KB, TŁ, TR (BUT) OSFforRAD 51 / 60



Examples

Classes

1 class Person
2 attr_reader :name, :age
3 def initialize(name, age)
4 @name, @age = name, age
5 end
6 def <=>(person) # Comparison operator for sorting
7 @age <=> person.age
8 end
9 def to_s
10 "#@name (#@age)"
11 end
12 end
13

14 group = [
15 Person.new("Bob", 33),
16 Person.new("Chris", 16),
17 Person.new("Ash", 23)
18 ]
19 puts group.sort.reverse

Bob (33)
Ash (23)
Chris (16)

MK, KB, TŁ, TR (BUT) OSFforRAD 52 / 60



Examples

Classes

Inheritance
1 class Student < Person
2 attr_accessor :index
3 def initialize(name, age, index)
4 super(name, age)
5 @index = index
6 end
7 def to_s
8 "Student: #@name (#@age, #@index)"
9 end
10 end
11

12 s = Student.new(’Frank’, 21, 758745)

MK, KB, TŁ, TR (BUT) OSFforRAD 53 / 60



Examples

Classes

Open Classes
In Ruby, classes are never closed: you can always add methods to an
existing class.

1 # re-open Ruby’s Time class
2 class Time
3 def yesterday
4 self - 86400
5 end
6 end
7

8 today = Time.now # => Thu Aug 14 16:51:50 +1200 2008
9 yesterday = today.yesterday # => Wed Aug 13 16:51:50 +1200 2008

monkey-patching, duck punching
"Well, I was just totally sold by Adam, the idea being that if it walks like a duck and
talks like a duck, it’s a duck, right? So if this duck is not giving you the noise that you
want, you’ve got to just punch that duck until it returns what you expect." – Patrick
Ewing

MK, KB, TŁ, TR (BUT) OSFforRAD 54 / 60



Examples

Unconstant number of arguments passed to the
function

The last parameter can be started from the mark *, which means that
any number of parameters will be transformed into an array.

1 def reverse_array(*b)
2 if b.size == 1
3 b
4 else
5 reverse_array(*b[1..-1])+[b[0]]
6 end
7 end
8

9 print reverse_array("!\n","ld","wor",", ","llo","He")
10 # Hello, world!

MK, KB, TŁ, TR (BUT) OSFforRAD 55 / 60



Examples

Marshalling

Marshal class, methods dump and load

1 sth = [3, {:a => "abc"}, "the_end"]
2 File.open("file.dat", "w+") do |f|
3 Marshal.dump(sth, f)
4 end
5

6 File.open("file.dat") do |f|
7 @sth = Marshal.load(f)
8 end

MK, KB, TŁ, TR (BUT) OSFforRAD 56 / 60



Additional informations

Additional informations

MK, KB, TŁ, TR (BUT) OSFforRAD 57 / 60



Additional informations

Implementations

Ruby 1.9 - has a single working implementation written in C that
utilizes a Ruby-specific virtual machine
Ruby 1.8 - has two main implementations: the official Ruby
interpreter often referred to as the Matz’s Ruby Interpreter or MRI
(the most widely used), and JRuby, a Java-based implementation
that runs on the Java Virtual Machine
other implementations: Cardinal, IronRuby, MacRuby, MagLev,
Rubinius, Ruby.NET, XRuby, HotRuby (runs Ruby source code on
a web browser and Flash)
Ruby is available on many operating systems such as Linux, Mac
OS X, Microsoft Windows, Windows CE and most flavors of Unix

MK, KB, TŁ, TR (BUT) OSFforRAD 58 / 60



Additional informations

Repositories and libraries

Ruby Application Archive (RAA) - http://raa.ruby-lang.org/
RubyForge - http://rubyforge.org/, as of November 2009, it hosts
over 8,000 projects and has over 41,000 registered users
RubyGems - a package manager for the Ruby programming
language that provides a standard format for distributing Ruby
programs and libraries
GitHub

MK, KB, TŁ, TR (BUT) OSFforRAD 59 / 60



Additional informations

References

http://en.wikipedia.org/wiki/Ruby_(programming_language)
Ruby Basic Tutorial by Steve Litt
(http://www.troubleshooters.com/codecorn/ruby/basictutorial.htm)
http://apohllo.pl/texts/1_ruby_basics_pl.pdf by Aleksander Pohl
...

MK, KB, TŁ, TR (BUT) OSFforRAD 60 / 60


	Introduction
	Ruby base
	Examples
	Additional informations

