ACTIONS OF LIE SUPERALGEBRAS ON SEMIPRIME ALGEBRAS WITH CENTRAL INVARIANTS

Piotr Grzeszczuk†∗ and Małgorzata Hryniewicka ‡

†Faculty of Computer Science, Bialystok University of Technology, Wiejska 45A, 15-351 Bialystok, Poland
E-mail: piotrgr@pb.edu.pl

‡Institute of Mathematics, University of Bialystok, Akademicka 2, 15-267 Bialystok, Poland
E-mail: margitt@math.uwb.edu.pl

Abstract

Let R be a semiprime algebra over a field K of characteristic zero acted finitely on by a finite dimensional Lie superalgebra $L = L_0 \oplus L_1$. It is shown that if L is nilpotent, $[L_0, L_1] = 0$ and the subalgebra of invariants R^L is central, then the action of L_0 on R is trivial and R satisfies the standard polynomial identity of degree $2 \cdot \sqrt{\dim_K L_1}$. Examples of actions of nilpotent Lie superalgebras with central invariants and with $[L_0, L_1] \neq 0$, are constructed.

1 Preliminaries

If R is an algebra over a field K of characteristic $\neq 2$ and σ is a K-linear automorphism of R such that $\sigma^2 = 1$, let $D_0 = \{ \delta \in \text{End}_K(R) \mid \delta(rs) = \delta(r)s + r\delta(s) \mathrm{ and } \delta\sigma(r) = \sigma\delta(r) \mathrm{ for all } r, s \in R \}$ and $D_1 = \{ \delta \in \text{End}_K(R) \mid \delta(rs) = \delta(r)s + \sigma(r)\delta(s) \mathrm{ and } \delta\sigma(r) = -\sigma\delta(r) \mathrm{ for all } r, s \in R \}$. Then $D_0 \oplus D_1$ is a Lie superalgebra and the elements of D_0 and D_1 are respectively, derivations and skew derivations of R. The superbracket on $D_0 \oplus D_1$ is defined as $[\delta_1, \delta_2] = \delta_1\delta_2 - (-1)^{ij}\delta_2\delta_1$, where $\delta_1 \in D_i$, $\delta_2 \in D_j$ and $i, j \in \{0, 1\}$. If $L = L_0 \oplus L_1$ is a Lie superalgebra, we say that L acts on R if there is a homomorphism ψ of L to $D_0 \oplus D_1$ identifying the elements of L_0 and L_1 with their images under ψ. It is well known that the homomorphism ψ induces an associative homomorphism from the universal enveloping algebra $U(L)$ to $\text{End}_K(R)$ and its image is finite dimensional if and only if the derivations and skew derivations from L_0 and L_1 are algebraic. In this case we will say that L acts finitely on R. Letting G be the group $\{1, \sigma\}$, we can form the skew group ring $H = U(L) * G$ and H is now a Hopf algebra acting on R. When L acts on R, we define the subalgebra of invariants...
R^L to be the set $\{ r \in R \mid \delta(r) = 0, \text{ for all } \delta \in L \}$. Depending upon the context, the symbol $[,]$ may represent either the superbracket on L, or the commutator map $[r, s] = rs - sr$, where r, s belong to an associative algebra. Inductively, we let $L^1 = L$ and $L^{n+1} = [L^n, L]$ and we say that L is nilpotent if there exists a positive integer N such that $L^N = 0$. If R (resp. L) is an associative algebra (resp. Lie superalgebra) we will let $Z(R)$ (resp. $Z(L)$) denote its center. For an element $a \in R$, and automorphism σ of R, ad_a (resp. ∂_a) stands for the inner derivation (inner σ-derivation) adjoint to a, i.e., $\text{ad}_a(x) = ax - xa$ ($\partial_a(x) = ax - \sigma(x)a$).

2 Main result

The main aim of this paper is to prove the following theorem.

Theorem 1. Let a finite dimensional nilpotent Lie superalgebra $L = L_0 \oplus L_1$ acts finitely on a semiprime \mathbb{K}-algebra R, where \mathbb{K} is a field of characteristic zero. If R^L is central and $[L_1, L_0] = 0$, then R satisfies the standard polynomial identity of degree $2 \cdot [\sqrt{2\dim_K L_1}]$.

It generalizes a result from [1] concerning the actions of nilpotent Lie algebras of characteristic zero on semiprime algebras. On the other hand, in [4] it is proved that if a pointed Hopf algebra H acts finitely of dimension N on a semiprime algebra R and the action is such that $L^H \neq 0$ for any nonzero H-stable left ideal L of R and $R^H \subseteq Z(R)$, then R satisfies PI of degree $2[\sqrt{N}]$. In Theorem 1 we prove for nilpotent Lie superalgebras with $[L_0, L_1] = 0$, that the dimension of the action of $U(L) \ast G$ depends only on the dimension of L_1. The key role will be played by the following easy observation: In characteristic zero the invariants of nilpotent Lie algebras acting on central simple algebras are never proper simple central subalgebras.

Lemma 2. Let R be a finite dimensional central simple \mathbb{F}-algebra acted on by a nilpotent Lie \mathbb{F}-algebra L, where \mathbb{F} is a field of characteristic zero. If R^L is a central simple \mathbb{F}-algebra, then $R = R^L$. In this case the action of L on R must be trivial.

Proof: Since L acts by \mathbb{F}-linear transformations, any derivation from L is inner. Suppose that the action of L on R is not trivial. Then we can take a nonzero derivation $\delta = \text{ad}_a \in Z(L)$, where $a \in R$. For any $a_b \in L$ we have $\text{ad}_{[a, b]} = [\text{ad}_a, \text{ad}_b] = 0$, so $[a, b] \in Z(R) = \mathbb{F}$. If $[a, b] = \lambda \neq 0$, then $[a, \lambda^{-1}b] = 1$. Note that the elements a and $\lambda^{-1}b$ generate in R a subalgebra isomorphic to the Weyl algebra $A_1(\mathbb{F})$, but it is impossible since R is finite dimensional. Consequently, $[a, b] = 0$ for any $a_b \in L$ and hence $a \in R^L$. In particular, ad_a acts trivially on $C_R(R^L)$, the centralizer of R^L in R. On the other hand the subalgebra R^L is simple and $Z(R^L) = \mathbb{F}$, so by Theorem 1 (p. 118) in [5] $R \simeq R^L \otimes_{\mathbb{F}} C_R(R^L) \simeq R^L \cdot C_R(R^L)$. Consequently, $R = R^L \cdot C_R(R^L)$. It implies that ad_a acts trivially on R, a contradiction. Therefore the action of L on R is trivial. \square

Suppose that a finite dimensional nilpotent Lie superalgebra $L = L_0 \oplus L_1$ acts finitely of dimension N on an algebra R. Then by R^L_0 we denote the largest subspace
of R on which any derivation from L_0 acts nilpotently, that is

$$R_{L_0} = \{ r \in R \mid \delta^N(r) = 0, \; \forall \delta \in L_0 \}.$$

It is clear that R_{L_0} is a subalgebra of R and R_{L_0} is stable under the automorphism σ. Furthermore, it is well known that (after eventual extension of the field of scalars) the algebra R is graded (with finite support) by the dual of the Lie algebra L_0 with R_{L_0} as the identity component of the grading. Therefore, if the algebra R is semiprime (semisimple), then R_{L_0} is also semiprime (resp. semisimple). In [3] (Lemma 12) it is proved that

Lemma 3. The subalgebra R_{L_0} is L-stable. In particular L acts on R_{L_0} by nilpotent transformations.

In the next Proposition we consider the case of action of a nilpotent Lie superalgebra on a finite dimensional G-simple algebra.

Proposition 4. Let a nilpotent Lie superalgebra $L = L_0 \oplus L_1$ acts on a G-simple finite dimensional \mathbb{K}-algebra R, where \mathbb{K} is a field of characteristic zero. If R^L is central and $[L_0, L_1] = 0$, then $L_0 = 0$.

Proof: First we will consider the case when L acts on R by nilpotent transformations, that is $R = R_{L_0}$. Suppose that $L_0 \neq 0$ and take a nonzero derivation δ from the center of L_0. Since $[L_0, L_1] = 0$, it is clear that δ is in the center of L. Let $k > 1$ be such that $\delta^k(R) = 0$ and $V = \delta^{k-1}(R) \neq 0$. Then V is invariant under the action of L, and since L acts via nilpotent transformations it is clear that $V^L = V \cap R^L \subseteq Z(R)$. On the other hand if $r, s \in R$, then the Leibniz rule gives

$$0 = \delta^k(\delta^{k-2}(r)s) = k\delta^{k-1}(r)\delta^{k-1}(s).$$

It means that $(V^L)^2 = 0$, so the center of R contains nilpotent elements. This is impossible since R is semisimple. The obtained contradiction shows that $L_0 = 0$.

Consider the general case. The above gives us immediately that $R^L = R_{L_0}$ and consequently the algebra R_{L_0} is semisimple. Thus, any its ideal I is idempotent, i.e., $I^2 = I$. Note that if I is G-stable, then the Leibniz rule, applied to any $\partial \in L_1$, gives $\partial(I) = \partial(I^2) \subseteq \partial(I) + \sigma(I)\partial(I) \subseteq I$. Hence any G-stable ideal I of R_{L_0} is also L-stable and $0 \neq I^L \subseteq Z(R)$. Thus I contains invertible elements. Consequently, R_{L_0} is also G-simple.

We will split considerations into two cases. First suppose that the automorphism σ is inner, and let $q \in R$ be such that $\sigma(x) = q^{-1}xq$, for $x \in R$. In this case any ideal of R is σ-stable, so R must be a simple algebra. Moreover it is easy to see that any skew derivation ∂ from L_1 must be inner. Indeed, since $\partial \sigma = -\sigma \partial$, we obtain that

$$q^{-1}\partial(x)q = \sigma(\partial(x)) = -\partial(\sigma(x)) = -\partial(q^{-1}xq) =$$

$$= -\partial(q^{-1})xq - q^{-1}\partial(x)q - q^{-1}\sigma(x)\partial(q).$$

Since $q\partial(q^{-1}) = -\partial(q)q^{-1}$,

$$\partial(x) = -\frac{1}{2}q\partial(q^{-1})x - \frac{1}{2}\sigma(x)\partial(q)q^{-1} = \frac{1}{2}q\partial(q^{-1})x - \sigma(x)\frac{1}{2}\partial(q)q^{-1}.$$
This immediately gives, that \(\partial(x) = bx - \sigma(x)b \), where \(b = \frac{1}{2} \partial(q)q^{-1} \). Consequently, any mapping from \(L_0 \cup L_1 \) is \(Z(R) \)-linear. We will show that the algebra \(R^{L_0} \) is simple and the centers of \(R^{L_0} \) and \(R \) coincide. Since the automorphism \(\sigma \) has order two, \(q^2 \in Z(R) \). Thus for any \(\delta = \text{ad}_a \in L_0 \),
\[
\delta(q) = \delta(\sigma(q)) = \sigma(\delta(q)) = q^{-1}(aq - qa)q = qa - aq = -\delta(q),
\]
so \(\delta(q) = 0 \). This implies that \(q \in R^{L_0} \), the restriction of \(\sigma \) to \(R^{L_0} \) is inner and hence the algebra \(R^{L_0} \) is simple. Since the action of \(L \) on \(R \) is inner, \(Z(R) = Z(R) \cap R^{L_0} \subseteq Z(R^{L_0}) \). We will show that \(Z(R^{L_0}) \subseteq Z(R) \). To this end, since \(R^L \subseteq Z(R) \), it suffices to show that \(Z(R^{L_0}) \subseteq R^{L_1} \). Take any \(z \in Z(R^{L_0}) \), and \(\partial = \partial_b \in L_1 \), where \(b = \frac{1}{2} \partial(q)q^{-1} \). Notice that \(b \in R^{L_0} \). Indeed, by assumption \([\delta, \partial] = 0\) for any \(\delta \in L_0 \) and by the above \(q \in R^{L_0} \), so
\[
\delta(b) = \frac{1}{2} \delta(\partial(q)q^{-1}) = \frac{1}{2} \delta(\partial(q))q^{-1} + \frac{1}{2} \partial(\delta(q))q^{-1} = \frac{1}{2} \partial(\delta(q))q^{-1} = 0.
\]
It means that \(b \in R^{L_0} \) and
\[
\partial(z) = bz - \sigma(z)b = bz - zb = 0,
\]
so \(z \in R^{L_1} \). It proves that \(Z(R^{L_0}) = Z(R) \). By Lemma 2 the action of \(L_0 \) on \(R \) must be trivial.

Finally suppose that the automorphism \(\sigma \) is outer. Since \(R \) is \(G \)-simple, the algebra \(R \) must be either simple or \(R = I \oplus \sigma(I) \) for some minimal ideal \(I \). In the first case, by the Skolem-Noether Theorem, \(\sigma \) is not an identity map on \(Z(R) \). In the second case \(Z(R) = Z(I) \oplus \sigma(Z(I)) \). Thus in both cases \(\sigma \) acts non identically on \(Z(R) \). Now since the center of \(R^{L_0} \) contains \(Z(R) \), the restriction of \(\sigma \) to \(R^{L_0} \) is also outer. Consequently, one can choose a nonzero element \(c \in Z(R) \) such that \(\sigma(c) \neq c \). Then \((c - \sigma(c))^2\) is nonzero and belongs to the field \(Z(R)^\sigma \). Thus \(c - \sigma(c) \) is invertible. Now let \(\partial \in L_1 \) and \(x \in R \). Notice that
\[
\partial(x)c + \sigma(x)\partial(c) = \partial(xc) = \partial(cx) = \partial(c)x + \sigma(c)\partial(x).
\]
In particular, we have
\[
\partial(x) = (c - \sigma(c))^{-1}\partial(c)x - \sigma(x)(c - \sigma(c))^{-1}\partial(c) = \partial_b(x),
\]
where \(b = (c - \sigma(c))^{-1}\partial(c) \). Thus \(L_1 \) acts on \(R \) via inner \(\sigma \)-derivations and in particular every mapping from \(L \) is \(Z(R)^\sigma \)-linear. We will prove that \(Z(R^{L_0})^\sigma = Z(R)^\sigma \). Similarly as above, it suffices to show that \(Z(R^{L_0})^\sigma \subseteq R^{L_1} \). Take any \(\partial = \partial_b \in L_1 \), where \(b = (c - \sigma(c))^{-1}\partial(c) \) for some \(c \in Z(R) \). Since \(L_0 \) acts trivially on the center of \(R \), one obtains that \(b \in R^{L_0} \). Now it is clear that \(\partial_b \) acts trivially on \(Z(R^{L_0})^\sigma \), and consequently \(Z(R^{L_0})^\sigma \subseteq R^{L_1} \).

Consider skew group rings \(R \ast G \) and \(R^{L_0} \ast G \). Since both of \(R \) and \(R^{L_0} \) are \(G \)-simple, and \(\sigma \) is outer on \(R \) and \(R^{L_0} \), the rings \(R \ast G \) and \(R^{L_0} \ast G \) are simple. Moreover it is clear that \(Z(R \ast G) = Z(R)^\sigma \) and \(Z(R^{L_0} \ast G) = Z(R^{L_0})^\sigma \). Thus \(R \ast G \) and \(R^{L_0} \ast G \) are central simple \(Z(R)^\sigma \)-algebras. Notice that the action of \(L_0 \) on \(R \) can be extended to an action on \(R \ast G \), via the formula \(\delta(a + b\sigma) = \delta(a) + \delta(b)\sigma \). In that case \((R \ast G)^{L_0} = R^{L_0} \ast G \) Again applying Lemma 2 we obtain that \(L_0 \) must act trivially on \(R \) and the proof is complete. \(\square \)
Central invariants

Corollary 5. Let a nilpotent Lie superalgebra $L = L_0 \oplus L_1$ acts on a G-simple finite dimensional \mathbb{K}-algebra R with center Z, where $\text{char} \mathbb{K} = 0$. If $R^L \subseteq Z$ and $[L_0, L_1] = 0$, then $\dim_{Z^G} R \leq [Z : Z^G] \cdot 2^{\dim_{Z^L} L_1}$. Moreover, in this case R satisfies the standard polynomial identity of degree $2 \cdot [\sqrt{2^{\dim_{Z^L} L_1}}]$.

Proof: By Proposition 4, $L_0 = 0$. Thus L is spanned by a family $\{\partial_1, \ldots, \partial_n\}$ of inner skew derivations such that $\partial_j^2 = 0$ and $\partial_i \partial_j + \partial_j \partial_i = 0$. It is clear that every ∂_j is Z^G-linear. Let us consider a chain

$$V_0 = R \supseteq V_1 \supseteq \cdots \supseteq V_n$$

of subspaces of R, where $V_j = \ker \partial_1 \cap \cdots \cap \ker \partial_j$ for $j = 1, \ldots, n$. Then $V_n \subseteq R^L \subseteq Z$ and ∂_j maps V_{j-1} into V_j. Moreover, it is clear that $\dim_{Z^G} V_{j-1} = \dim_{Z^G} (\ker \partial_j \cap V_{j-1}) + \dim_{Z^G} \partial_j(V_{j-1}) \leq 2 \cdot \dim_{Z^G} V_j$. Thus

$$\dim_{Z^G} R \leq 2^n \cdot \dim_{Z^G} V_n \leq [Z : Z^G] \cdot 2^{\dim_{Z^L} L_1}.$$

Since R is G-simple, the algebra R must be either simple or $R = I \oplus \sigma(I)$ for a minimal ideal I of R. Then I is certainly a simple algebra. The above inequality implies that $\dim_{Z^G} R \leq 2^{\dim_{Z^L} L_1}$ in the first case, and $\dim_{Z^G} I \leq 2^{\dim_{Z^L} L_1}$ in the second case. The result follows now by the Amitsur-Levitzki Theorem.

If R is semiprime we let $Q = Q(R)$ to denote the symmetric Martindale quotient ring. Its center, known as the extended centroid of R, we denote by C. The following properties of Q in the case when R is acted on by a Hopf algebra are proved in [3].

Lemma 6. Let R be a semiprime H-module algebra such that the H-action on R extends to an H-action on Q and any nonzero H-stable ideal of R contains nontrivial invariants. Then

1. the ring $C^H = C \cap Q^H$ is von Neumann regular and selfinjective.
2. If a nonempty subset $S \subseteq C^H \setminus \{0\}$ is closed under a multiplication, then the localization Q_S of Q at S is semiprime and $Z(Q_S) = C_S$.
3. If H acts finitely on Q and $S = C^H \setminus M$, where M is a maximal ideal of C^H, then the H-action on Q extends to an H-action on Q_S and $(Q^H)_S = (Q_S)^H$, $(C^H)_S = (C^H)_S = C_S \cap (Q_S)^H$ is a field contained in the center of Q_S.

We can now prove the main result of the paper.

Proof of Theorem 1: Let $H = U(L) \ast G$. By ([2], Corollary 6) every H-invariant non-nilpotent subalgebra of R contains nonzero invariants. Thus we can apply the results from [4]. Let M be a maximal ideal of $C^H = C \cap Q^H$ and put $S = C^H \setminus M$. By the above lemma and [4] it follows that $(C_S)^H$ is a field and Q_S is a finite dimensional, G-simple $(C_S)^H$-algebra. Using Corollary 5 we obtain that Q_M satisfies the standard polynomial identity of degree $2 \cdot [\sqrt{2^{\dim_{Z^L} L_1}}]$. Since it holds for any maximal ideal M of C^H, the ring Q, and consequently R, satisfies the standard polynomial identity of degree $2 \cdot [\sqrt{2^{\dim_{Z^L} L_1}}]$.

3 Examples

In this section we construct examples of actions of nilpotent Lie superalgebras with central invariants and with $[L_0, L_1] \neq 0$. We start with general properties of inner derivations and skew derivations of an algebra R with an automorphism σ of order two. Then $R = R_0 \oplus R_1$ is \mathbb{Z}_2-graded, where $R_0 = \{ x \in R \mid \sigma(x) = x \}$ and $R_1 = \{ x \in R \mid \sigma(x) = -x \}$. For any inner derivation δ of R, the condition $\delta \sigma = \sigma \delta$ is equivalent to that δ is induced by some $a \in R_0$. To see that, we let δ be induced by $a = a_0 + a_1 \in R$. Then

$$\delta(x) = ax - xa = (a_0 x - xa_0) + (a_1 x - xa_1).$$

This immediately implies that

$$\delta(\sigma(x)) = (a_0 \sigma(x) - \sigma(x)a_0) + (a_1 \sigma(x) - \sigma(x)a_1)$$

and

$$\sigma(\delta(x)) = (a_0 \sigma(x) - \sigma(x)a_0) - (a_1 \sigma(x) - \sigma(x)a_1).$$

Since δ and σ commute, the previous equations imply that $a_1 \sigma(x) - \sigma(x)a_1 = 0$. Replacing x by $\sigma(x)$ yields $a_1 x - xa_1 = 0$. Equation (1) now becomes

$$\delta(x) = a_0 x - xa_0 = ad_{a_0}(x).$$

In the same manner we can show that for any inner skew derivation ∂ of R, the condition $\partial \sigma = -\sigma \partial$ is equivalent to that $\partial = \partial_b$ for some $b \in R_1$.

Lemma 7. Let R be an algebra over a field \mathbb{K} of characteristic $\neq 2$ and σ be a \mathbb{K}-linear automorphism of R of order 2. Let $u \in R$ be invertible and $\sigma(u) = -u$. Let \tilde{R} be the \mathbb{K}-algebra $M_2(R)$, the 2×2 matrices over R. Then the map $\varphi: R \to \tilde{R}$ given by

$$\varphi(x) = \begin{pmatrix} x & 0 \\ 0 & u^{-1}\sigma(x)u \end{pmatrix}$$

is an injective homomorphism of algebras, satisfying $\tilde{\sigma} \varphi = \varphi \sigma$ (where $\tilde{\sigma}$ is a componentwise extension of σ to \tilde{R}).

If a Lie superalgebra $L = L_0 \oplus L_1$ acts on R by inner derivations and inner σ-derivations with $R^L = \mathbb{K}$, then L acts on \tilde{R} by inner derivations and inner $\tilde{\sigma}$-derivations with

$$\tilde{R}^L = \left\{ \begin{pmatrix} \alpha & \beta u \\ \gamma u^{-1} & \lambda \end{pmatrix} \in \tilde{R} \mid \alpha, \beta, \gamma, \lambda \in \mathbb{K} \right\}.$$

Proof: Notice that

$$\tilde{\sigma}(\varphi(x)) = \tilde{\sigma}\left(\begin{pmatrix} x & 0 \\ 0 & u^{-1}\sigma(x)u \end{pmatrix} \right) = \begin{pmatrix} \sigma(x) & 0 \\ 0 & u^{-1}xu \end{pmatrix} = (\varphi \sigma)(x).$$

In order to prove the second part, observe that for all inner derivation $ad_a \in L_0$ and the inner skew derivation $\partial_b \in L_1$ of R and for every matrix $\tilde{x} = \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} \in \tilde{R}$ the following equations hold

$$\text{ad}_{\varphi(a)}(\tilde{x}) = \begin{pmatrix} a & 0 \\ 0 & u^{-1}au \end{pmatrix} \cdot \tilde{x} - \tilde{x} \cdot \begin{pmatrix} a & 0 \\ 0 & u^{-1}au \end{pmatrix} = \begin{pmatrix} \text{ad}_a(x_{11}) & \text{ad}_a(x_{12}u^{-1})u \\ u^{-1}\text{ad}_a(u_{x_{21}}) & u^{-1}\text{ad}_a(u_{x_{22}}u^{-1})u \end{pmatrix},$$

$$\text{ad}_{\varphi(b)}(\tilde{x}) = \begin{pmatrix} 0 & u^{-1}bu \\ \gamma u^{-1} & \lambda \end{pmatrix} \cdot \tilde{x} - \tilde{x} \cdot \begin{pmatrix} 0 & u^{-1}bu \\ \gamma u^{-1} & \lambda \end{pmatrix} = \begin{pmatrix} \text{ad}_b(x_{11}) & \text{ad}_b(x_{12}u^{-1})u \\ u^{-1}\text{ad}_b(u_{x_{21}}) & u^{-1}\text{ad}_b(u_{x_{22}}u^{-1})u \end{pmatrix}. $$
and
\[
\partial_{\varphi(b)}(\tilde{x}) = \begin{pmatrix} b & 0 \\ 0 & -u^{-1}bu \end{pmatrix} \cdot \tilde{x} - \bar{\sigma}(\tilde{x}) \cdot \begin{pmatrix} b & 0 \\ 0 & -u^{-1}bu \end{pmatrix} = \\
= \begin{pmatrix} \partial_b(x_{11}) & \partial_b(x_{12}u^{-1})u \\ \sigma(u^{-1})\partial_b(ux_{21}) & \sigma(u^{-1})\partial_b(ux_{22}u^{-1})u \end{pmatrix}.
\]

¿From the above equations it follows that \(\tilde{x} \in \tilde{R}^L \) if and only if the elements \(x_{11}, x_{12}u^{-1}, ux_{21} \) and \(ux_{22}u^{-1} \) belong to \(R^L \). Under the assumption that \(R^L = \mathbb{K} \), we now easily obtain the assertion of the lemma.

We start our construction from the algebra \(R = M_2(\mathbb{K}) \) of \(2 \times 2 \) matrices over a field \(\mathbb{K} \) of characteristic 0. Let \(\sigma \) be the inner automorphism of order 2 of \(R \) induced by the diagonal matrix \(\text{diag}(1, -1) \) and let \(\partial_{b_1} \) and \(\partial_{b_2} \) be the inner \(\sigma \)-derivations of \(R \) induced by
\[
b_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \in R_1 \quad \text{and} \quad b_2 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \in R_1,
\]
respectively. It can be easily checked that
\[
b_1^2 = -b_2^2 = 1 \quad \text{and} \quad b_1b_2 + b_2b_1 = 0.
\]
As a result, the skew derivations \(\partial_{b_1} \) and \(\partial_{b_2} \) span an abelian Lie superalgebra \(L = L_0 \oplus L_1 \) where \(L_0 = 0 \) and \(L_1 = \text{Span}_\mathbb{K}\{\partial_{b_1}, \partial_{b_2}\} \).

¿From the explicit formulas for \(\partial_{b_1} \) and \(\partial_{b_2} \)
\[
\partial_{b_1} \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} = \begin{pmatrix} x_{21} + x_{12} & x_{22} - x_{11} \\ x_{11} - x_{22} & x_{21} + x_{12} \end{pmatrix}
\]
and
\[
\partial_{b_2} \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} = \begin{pmatrix} x_{21} - x_{12} & x_{22} - x_{11} \\ x_{22} - x_{11} & x_{21} - x_{12} \end{pmatrix}
\]
it follows immediately that \(R^L = \mathbb{K} \).

Using Lemma 7, applied to the invertible element \(u = b_2 \), we have an embedding of \(R \) into \(\tilde{R} = M_2(R) \), according to the formula
\[
\varphi(x) = \begin{pmatrix} x & 0 \\ 0 & b_2^{-1}\sigma(x)b_2 \end{pmatrix}.
\]
Put
\[
\tilde{b}_1 = \varphi(b_1) = \begin{pmatrix} b_1 & 0 \\ 0 & b_1 \end{pmatrix} \in \tilde{R}_1 \quad \text{and} \quad \tilde{b}_2 = \varphi(b_2) = \begin{pmatrix} b_2 & 0 \\ 0 & -b_2 \end{pmatrix} \in \tilde{R}_1
\]
and consider the additional matrices
\[
\tilde{b}_3 = \begin{pmatrix} 0 & b_2 \\ -b_2 & 0 \end{pmatrix} \in \tilde{R}_1 \quad \text{and} \quad \tilde{b}_4 = \begin{pmatrix} 0 & b_2 \\ b_2 & 0 \end{pmatrix} \in \tilde{R}_1.
\]
It is not hard to check that
\[
\tilde{b}_1^2 = -\tilde{b}_2^2 = \tilde{b}_3^2 = -\tilde{b}_4^2 = 1 \quad \text{and} \quad \tilde{b}_i\tilde{b}_j + \tilde{b}_j\tilde{b}_i = 0
\]
for all $i \neq j$. As before, the inner skew derivations ∂_{b_1}, ∂_{b_2}, ∂_{b_3} and ∂_{b_4} span an abelian Lie superalgebra $\tilde{L} = \tilde{L}_0 \oplus \tilde{L}_1$, where $\tilde{L}_0 = 0$ and $\tilde{L}_1 = \text{span}_K\{\partial_{b_1}, \partial_{b_2}, \partial_{b_3}, \partial_{b_4}\}$. Lemma 7 says that the subalgebra of invariants \tilde{R}^L under the action of L consists of all matrices of the form $\begin{pmatrix} \alpha & \beta b_2 \\ \gamma b_2 & \lambda \end{pmatrix}$, where $\alpha, \beta, \gamma, \lambda \in K$. Furthermore, a simple calculation shows that
\[\partial_{b_3}(\begin{pmatrix} \alpha & \beta b_2 \\ \gamma b_2 & \lambda \end{pmatrix}) = \begin{pmatrix} \beta - \gamma & (\lambda - \alpha)b_2 \\ (\lambda - \alpha)b_2 & \beta - \gamma \end{pmatrix} \]
and
\[\partial_{b_4}(\begin{pmatrix} \alpha & \beta b_2 \\ \gamma b_2 & \lambda \end{pmatrix}) = \begin{pmatrix} -\beta - \gamma & (\lambda - \alpha)b_2 \\ (\alpha - \lambda)b_2 & -\beta - \gamma \end{pmatrix}. \]
This immediately implies that $\tilde{R}^L = K$.

Applying Lemma 7 for the invertible element $u = \tilde{b}_4$ we have the next embedding of \tilde{R} into the algebra $R = M_2(\tilde{R})$, the 2×2 matrices over \tilde{R} according to the formula
\[\varphi(\tilde{x}) = \begin{pmatrix} \tilde{x} & 0 \\ 0 & \tilde{b}_4^{-1}\tilde{x}\tilde{b}_4 \end{pmatrix}. \]
Put
\[B_i = \varphi(\tilde{b}_i) = \begin{pmatrix} \tilde{b}_i & 0 \\ 0 & \tilde{b}_i \end{pmatrix} \in R_1 \text{ and } B_4 = \varphi(\tilde{b}_4) = \begin{pmatrix} \tilde{b}_4 & 0 \\ 0 & -\tilde{b}_4 \end{pmatrix} \in R_1 \]
for $i = 1, 2, 3$ and consider the additional matrices

- $A_1 = \begin{pmatrix} 0 & \tilde{a}_1 \\ -\tilde{a}_1 & 0 \end{pmatrix} \in R_0$ and $C_1 = \begin{pmatrix} 0 & \tilde{a}_1 \\ 0 & 0 \end{pmatrix} \in R_0$, where $\tilde{a}_1 = \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix} \in \tilde{R}_0$,

- $A_2 = \begin{pmatrix} 0 & \tilde{a}_2 + 1 \\ -\tilde{a}_2 + 1 & 0 \end{pmatrix} \in R_0$ and $C_2 = \begin{pmatrix} 0 & \tilde{a}_2 + 1 \\ 0 & 0 \end{pmatrix} \in R_0$, where $\tilde{a}_2 = \begin{pmatrix} b_1 b_2 & 0 \\ b_1 b_2 & 0 \end{pmatrix} \in \tilde{R}_0$,

- $A_3 = \begin{pmatrix} \tilde{a}_3 - \tilde{a}_1 & 0 \\ 0 & \tilde{a}_3 + \tilde{a}_1 \end{pmatrix} \in R_0$, where $\tilde{a}_3 = \begin{pmatrix} b_1 b_2 & b_1 b_2 \\ -b_1 b_2 & -b_1 b_2 \end{pmatrix} \in \tilde{R}_0$,

- $B_5 = \begin{pmatrix} 0 & \tilde{d}_5 \\ \tilde{d}_5 & 0 \end{pmatrix} \in R_1$, $B_6 = \begin{pmatrix} 0 & \tilde{b}_4 \\ -\tilde{b}_4 & 0 \end{pmatrix} \in R_1$ and $B_7 = \begin{pmatrix} 0 & \tilde{b}_4 \\ \tilde{b}_4 & 0 \end{pmatrix} \in R_1$, where $\tilde{d}_5 = \begin{pmatrix} b_1 + b_2 & b_1 + b_2 \\ -b_1 - b_2 & -b_1 - b_2 \end{pmatrix}$, $\tilde{b}_5 = \begin{pmatrix} -b_1 + b_2 & -b_1 + b_2 \\ b_1 - b_2 & b_1 - b_2 \end{pmatrix} \in \tilde{R}_1$,

- $D_5 = \begin{pmatrix} 0 & \tilde{d}_5 \\ 0 & 0 \end{pmatrix} + B_7 \in R_1$ and $D_6 = \begin{pmatrix} 0 & \tilde{b}_4 \\ 0 & 0 \end{pmatrix} \in R_1$.

Notice that if $N_0 = \text{span}_K\{\text{ad}_{C_1}, \text{ad}_{C_2}, \text{ad}_{A_3}\}$ and $N_1 = \text{span}_K\{\partial_{B_1}, \partial_{B_2}, \partial_{B_3}, \partial_{B_4}, \partial_{D_5}, \partial_{D_6}\}$, then $N = N_0 \oplus N_1$ is a 9-dimensional Lie superalgebra of nilpotency class 4.
Central invariants

(see Table 1). Lemma 7 asserts that the subalgebra of invariants $R_{\tilde{L}}$ under the action of \tilde{L} consists of all matrices of the form \[
\begin{pmatrix}
\alpha & \beta \\
\gamma & \lambda
\end{pmatrix}
\] where $\alpha, \beta, \gamma, \lambda \in K$. Moreover,

\[
\partial_{D_3}\left(
\begin{pmatrix}
\alpha & \beta \\
\gamma & \lambda
\end{pmatrix}
\right) = \begin{pmatrix}
\gamma(\tilde{a}_3 - \tilde{a}_1) - \beta - \gamma & (\lambda - \alpha)(\tilde{b}_4 + \tilde{d}_5) \\
(\alpha - \lambda)\tilde{b}_4 & \gamma(\tilde{a}_3 + \tilde{a}_1) - \beta - \gamma
\end{pmatrix}.
\]

As a result we obtain that $R_{\tilde{L}} = K$.

Notice also that if $M_0 = \text{span}_K\{\text{ad} A_1, \text{ad} A_2, \text{ad} A_3\}$ and $M_1 = \text{span}_K\{\partial B_1, \partial B_2, \partial B_3, \partial B_4, \partial B_5 + B_7, \partial B_6\}$, then $M = M_0 \oplus M_1$ is a nilpotent Lie superalgebra of nilpotency class 6 (see Table 2). We have

\[
\partial_{B_5 + B_7}\left(
\begin{pmatrix}
\alpha & \beta \\
\gamma & \lambda
\end{pmatrix}
\right) = \begin{pmatrix}
\gamma(\tilde{a}_3 - \tilde{a}_1) - \beta - \gamma & (\lambda - \alpha)(\tilde{b}_4 + \tilde{d}_5) \\
(\alpha - \lambda)\tilde{b}_4 & \gamma(\tilde{a}_3 + \tilde{a}_1) - \beta - \gamma
\end{pmatrix}.
\]

This implies immediately that $R_M = K$.

Finally, observe also that M is a subalgebra of a nilpotent Lie superalgebra $L = L_0 \oplus L_1$ of nilpotency class 6, where $L_0 = [L_1, L_1] = \text{span}_K\{\text{ad} A_1, \text{ad} A_2, \text{ad} A_3\}$ and $L_1 = \text{span}_K\{\partial B_1, \partial B_2, \partial B_3, \partial B_4, \partial B_5, \partial B_6, \partial B_7\}$ (see Table 2). Obviously, $R_{\tilde{L}} = K$. Starting with the algebra R, the invertible element $u = B_7$ and the Lie superalgebra L, and again applying the above procedure, we can produce successive examples.
\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline
\texttt{[\cdot,\cdot]} & \texttt{ad}_A_1 & \texttt{ad}_A_2 & \texttt{ad}_A_3 & \partial_B_1 & \partial_B_2 & \partial_B_3 & \partial_B_4 & \partial_B_5 \\
\hline
\texttt{ad}_A_1 & 0 & 0 & 0 & 0 & 0 & \texttt{ad}_A_1 & 0 & \partial_B_2 + \partial_B_3 \\
\texttt{ad}_A_2 & -2\partial_B_1 & 2\partial_B_2 & 0 & 0 & 0 & 0 & 0 & 0 \\
\texttt{ad}_A_3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}
\caption{operation table of N}
\end{table}

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline
\texttt{[\cdot,\cdot]} & \texttt{ad}_A_1 & \texttt{ad}_A_2 & \texttt{ad}_A_3 & \partial_B_1 & \partial_B_2 & \partial_B_3 & \partial_B_4 & \partial_B_5 & \partial_B_6 \\
\hline
\texttt{ad}_A_1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\texttt{ad}_A_2 & 2\partial_B_1 & 2\partial_B_2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\texttt{ad}_A_3 & -2\partial_B_1 & -2\partial_B_2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\partial_B_1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\partial_B_2 & 2\partial_B_1 & 2\partial_B_2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\partial_B_3 & -2\partial_B_1 & -2\partial_B_2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\partial_B_4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\partial_B_5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\partial_B_6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}
\caption{operation table of L}
\end{table}

References

