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All groups considered in this talk are finite. The radicals here are under-

stood in the sense of Kurosh and Amitsur, but other radicals will turn up

from time to time. The set of all primes is denoted by P, p will always denote

a prime and π will always denote some subset of P. Moreover S denotes the

class of all finite simple groups, F denotes the class of all finite groups and ∅
denotes the empty class of groups.

Recall that a subgroup H of a group G is said to be subnormal in G if

there exists a chain

G = G0 > G1 > G2 > · · · > Gr = H > 1

of subgroups of G with Gi a normal subgroup of Gi−1 (for i = 1, . . . , r). If

H is subnormal in G, we shall write H snG. The series itself is called a

subnormal series and Gi−1/Gi are called the factors of this series. If all the

factors of a normal series are simple, then the series is called a composition

series and the factors are called composition factors of G. Any finite group

G possesses at least one composition series. The Jordan-Hölder theorem

states that in a finite group any two composition series have the same length

and there is a bijection between the two sets of factors in isomorphic pairs.

Therefore these simple factors are uniquely determined by G (apart from

ordering).
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The history of radicals is well-known to the participants of this meeting.

Let me only recall that between 1952 and 1954 Amitsur and Kurosh [1, 2, 3,

11] defined the notion of radical classes and proved basic results concerning

them.

The starting point of the theory of classes of groups is the attempt to

develop a generalized Sylow theory, which leads to an investigation into the

problem of the existence of certain conjugacy classes of subgroups in finite

groups.

Perphaps the most well-known existence and conjugacy theorem is Sy-

low’s theorem which says, in its simplest form, that if p is a prime and G is

a group, then the maximal p-subgroups of G are conjugate in G.

Theorem 1. (Sylow, 1872) Let G be a group and p a prime. Then the

maximal p-subgroups of G are conjugate in G.

The beginning of this particular area of finite group theory came with P.

Hall’s generalization of Sylow’s theorem to solvable groups.

It shows that, in a solvable group G, and corresponding to any set π of

primes, there is a unique conjugacy class of subgroups of G whose orders

involve only primes in π and whose indices involve no primes in π the so-

called Hall π-subgroups.

Theorem 2. (P. Hall, 1928) Let G be a solvable group and π any set of

primes. Then the maximal π-subgroups of G are conjugate in G.

We shall use Hallπ(G) to denote the set of all Hall π-subgroups of G.

By considering the order and index of Hall π-subgroups, it is easy to see

that they satisfy the following three conditions.

Let N be a normal subgroup of a solvable group G. Then

1. Hallπ(G/N) = {SN/N : S ∈ Hallπ(G)}
2. Hallπ(N) = {N ∩N : S ∈ Hallπ(G)}
3. If T/N ∈ Hallπ(G/N) and S ∈ Hallπ(T ), then S ∈ Hallπ(G).

In particular, Hall π-subgroups behave well as we pass from G to a factor

group G/N or to a normal subgroup N. It is these three properties that

have led to wide generalizations, the first and third properties leading to the
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theory of saturated formations and the associated projectors and the second

property to the theory of Fitting classes and injectors.

The first evidence that further extensions were possible came in 1961

with the following discovery of R.W. Carter: every solvable group has self-

normalizing nilpotent subgroups (or Carter subgroups as they became known)

and these form a single conjugacy class of the group.

Recall that a group G is said to be nilpotent if every subgroup of G is

subnormal.

A Carter subgroup of a group G is a self-normalizing nilpotent subgroup

of G.

Theorem 3. (R.W. Carter, 1961) A solvable group G has a Carter subgroup

and any two Carter subgroups of G are conjugate in G.

It is clear that a Carter subgroup of a group G is a maximal nilpotent

subgroup of G. However, if G is a non-nilpotent solvable group, then G has

a maximal nilpotent subgroup which is not a Carter subgroup.

W. Gaschütz viewed the Carter subgroups as analogues of the Sylow and

Hall subgroups of a solvable groups and in 1963 published a seminar paper

where a broad extension of the Hall and Carter subgroups was presented. The

theory of formations was born. The new subgroups had many of properties

of Sylow and Hall subgroups, but the theory was not arithmetic one, based

on the orders of subgroups. Instead, the important idea was concerned with

group classes having the same properties.

A formation is a class of groups that is closed under taking quotient

images and subdirect products.

Definition 4. A class X of groups is called a formation if it has the following

two properties:

(1) every quotient group of every X-group is an X-group; (if G ∈ X and

N 6 G, then G/N ∈ X),

(2) if N1, N2 E G with N1∩N2 = 1 and G/Ni ∈ X for i = 1, 2, then G ∈ X.

Examples of formations are the class of abelian groups, the class of nil-

potent groups and the class of solvable groups.
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Definition 5. A formation X is said to be saturated if, whenever G is a

group such that G/Φ(G) is an X-group, G is itself an X-group.

Recall that the Frattini subgroup, Φ(G), of a group G is the intersection of

all maximal proper subgroups of G (and Φ(G) = G if there are no maximal

proper subgroups of G). The Frattini subgroup can be considered as an

analogue of Jacobson radical for modules.

For example, the formations of π-groups, nilpotent groups and solvable

groups are saturated but the formation of abelian groups is not saturated.

Gaschütz proved that for any saturated formation of solvable groups X,

any solvable group G possesses X-groups with certain special properties and

these subgroups form a single conjugacy class. The subgroups in question

are now called X-projectors of G, and (by a result of T.O. Hawkes) are

characterized by the following property: a subgroup H of G is an X-projector

of G if and only if, whenever K E G, HK/K is a maximal X-subgroup

of G/K. When X is the saturated formation of solvable π-groups, the X-

projectors of G are the Hall π-subgroups of G; and when X is the saturated

formation of nilpotent groups, the X-projectors of G are the Carter subgroups

of G.

The theory of Fitting classes began when B. Fischer in his habilitation

thesis wanted to see how far it is possible to dualise the theory of saturated

formations and projectors by interchanging the roles of normal subgroups

and quotient groups. A Fitting class should be regarded as the dual of a

formation.

A Fitting class is a class of groups closed under taking normal subgroups

and normal products of its members.

Definition 6. A class X of groups is called a Fitting class if it has the

following two properties:

(1) every normal subgroup of every X-group is an X-group;

(2) whenever a group G has normal X-subgroups N1 and N2 such that

G = N1N2, then G ∈ X.
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The class of π-groups is a Fitting class, and so is the class of nilpotent

groups.

As it turn out, the definition of projector is the right thing to dualise in

order to guarantee conjugacy. In 1967 the concept of injector appears in the

celebrated paper by B. Fischer, W. Gaschütz and B. Hartley.

A subgroup V of G is said to be an X-injector of G if, whenever K is a

subnormal subgroup of G, V ∩ K is a maximal X-subgroup of K. Fischer,

Gaschütz and Hartley proved that a class of solvable groups X is a Fitting

class if and only if every solvable group has an X-injector. Moreover, the

X-injectors form a single conjugacy class of subgroups of G. (Here no extra

condition on the Fitting class corresponding to saturation for formations is

needed).

When X is the Fitting class of all solvable π-groups, the X-injectors of

a solvable group, like its X-projectors, turn out to be the Hall π-subgroups.

This is the only situation in which the injectors and projectors coincide,

and so the two theories are quite independent generalizations of the classical

Sylow and Hall subgroups.

These classes have been used to obtain a picture of the internal structure

of groups. But there is a number of results which have something to say about

the classes themselves. In investigating the classes above it is interesting to

look at relations between them obtained by adding extra closure properties

or by restricting the class of groups under consideration.

For example, in 1982, Bryce and Cossey proved the following remarkable

fact.

Theorem 7. (R.A. Bryce and J. Cossey, 1982) A subgroup closed Fitting

class of solvable groups is a saturated formation.

There are three volumes on classes of finite groups [5, 4, 8]:

1. Finite Soluble Groups by K. Doerk and T. Hawkes (1992),

2. The theory of classes of groups by Wenbin Guo (2000),

3. Classes of finite groups. by A. Ballester-Bolinches and L.M. Ezquerro

(2006).
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But what about radicals?

For a particular group G and class X of groups, we may ask whether G

has an X-radical and an X-residual ; that is, whether G has a unique largest

normal X-subgroup H (in which case H is the X-radical of G) and whether

G has a unique smallest normal subgroup K such that G/K is an X-group

(in which case K is the X-residual of G).

Theorem 8. A class X of groups is a formation if and only if it has the

following two properties:

(1) every quotient group of every X-group is an X-group;

(2) every group has an X-residual.

If G is a group and X is a formation, then the X-residual is the intersection

∩〈N E G | G/N ∈ X〉.

Theorem 9. A class X of groups is a Fitting class if and only if it has the

following two properties:

(1) every normal subgroup of every X-group is an X-group,

(2) every group has an X-radical.

If G is a group and X is a Fitting class, then the X-radical of G is the

subgroup 〈N snG | N ∈ X〉.
Now we have the group versions of definitions of Hoehnke radical, com-

plete radical, idempotent radical, Kurosh-Amitsur radical and Plotkin radical

(see also [7]).

A radical γ may be defined as an assignment γ : G 7→ γ(G) designating

a certain normal subgroup γ(G) to each group G. Such an assignment γ is

called a Hoehnke radical, if

i) f
(
γ(G)

)
⊆ γ

(
f(G)

)
for every

epimorphism f : G−. f(G),

ii) γ
(
G/γ(G)

)
= 1

6



for every group G. A Hoehnke radical γ may satisfy also the following con-

ditions:

iii) γ is complete: if H C G and

γ(H) = H then H ⊆ γ(G);

iv) γ is idempotent : γ
(
γ(G)

)
= γ(G)

for every group G.

It is known that γ is a Kurosh-Amitsur radical if and only if the assign-

ment G 7→ γ(G) is a complete, idempotent Hoehnke radical.

A radical assignment γ : G 7→ γ(G) is called a Plotkin radical, if it satisfies

conditions i), iii) and iv).

It can be seen that:

(1) if γ is a formation, then a rule which assigns to each group its γ-residual

is a Hoehnke radical;

(2) if γ is a Fitting class, then a rule which assigns to each group its γ-

radical is a complete idempotent radical;

(3) a rule which assigns to each group its solvable radical is a Kurosh-

Amitsur radical, where the solvable radical of a group is the unique

maximal solvable normal subgroup of the group.

In 1962 in his paper Radicals in the theory of groups [12] Kurosh showed

that the general theory of radicals could be applied in the case of groups.

Now we will concentrate on Kurosh-Amitsur radicals.

The definition of Kurosh-Amitsur radicals can be carried over almost

word by word from the theory of rings to the group theory if we put the

words normal subgroup instead of ideal and group instead of ring.

Definition 10. A class γ of groups is called a radical class in the sense of

Kurosh-Amitsur (briefly a radical) if it has the following three properties:

(1) every quotient group of every γ-group is an γ-group;

(2) for every group G, the join γ(G) = 〈H C G | H ∈ γ〉 is in γ;

(3) γ
(
G/γ(G)

)
= 1 for every group G.
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γ(G) is called the γ-radical of G. A group G is called a γ-radical group if

G ∈ γ, that is γ(G) = G.

Theorem 11. For any class γ of groups the following conditions are equiva-

lent:

(1) γ is a radical class;

(2) γ is closed under taking quotient groups and under group extensions.

Theorem 12. For any class γ of groups the following conditions are equiva-

lent:

(1) γ is a semisimple class;

(2) γ is closed under taking normal subgroups and under group extensions.

The radical class (semisimple class) of all groups whose composition fac-

tors are isomorphic with a nonabelian simple group, say H, is not a Fitting

class (formation) generated by H because the last one is the smallest class

genenerated by H which is closed under taking direct product. The Fitting

class (formation) of all nilpotent groups is not closed under group extensions,

so it is not a semisimple class (radical class). The class of all solvable groups

is a radical class, a semisimple class, a Fitting class and a formation.

Definition 13. A semisimple radical class is a class which is simultaneously

a radical class and a semisimple class.

Theorem 14. Let γ be a class of groups. Then the following conditions are

equivalent:

(1) γ is a radical class which is closed with respect to taking normal sub-

groups;

(2) γ is a semisimple class which is closed with respect to taking quotient

images;

(3) γ is a semisimple radical class;
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(4) A group G belongs to γ if and only if all the composition factors of G

belong to γ.

The constructions of the lower radical and the upper radical for groups

are similar to those for rings.

Example 15. [12] In the class of all groups the classes of the form L(M),

where M ⊆ S, are the only radical classes, which are closed with respect

to normal subgroups. In fact, if the radical class γ is closed with respect

to normal subgroups then it contains all composition factors of any group

belonging to it. Therefore L(M) is a semisimple radical class.

The analogous assertion is true for semisimple class too.

The wreath product of two groups is a useful tool for handling classes of

groups.

Definition 16. The regular wreath product of two groups A and B which

are assumed to be non-trivial, is defined as follows. Let F be the group of

functions on B taking values in A with multiplication of f, g ∈ F defined by

fg(x) = f(x)g(x) for all x ∈ B.

Then F is the direct product of |B| isomorphic copies of A.

If f ∈ F and b ∈ B, we define f b ∈ F by

f b(x) = f(xb−1) for all x ∈ B.

The group of automorphisms of F defined by

f 7→ f b for all f ∈ F

is isomorphic to B and we shall identify it with B. The regular wreath

product W of A and B is defined as the splitting extension of F by this group

of automorphisms; that is, W is generated by B and F with the relations

b−1fb = f b for all b ∈ B and f ∈ F.

W is called the regular wreath product of A by B, written AoB. We shall refer

to F as the base group of W . The subgroup of F consisting of all constant

functions is the diagonal subgroup. It is clearly isomorphic to A. The centre

of W coincides with the centre of the diagonal subgroup of W .
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In the regular wreath product A o B we shall need the following ’map’ τ

from F to A:

τ(f) =
∏
b∈B

f(b), f ∈ F.

Proposition 17. [13] If B is not the trivial group, if N C W = A o B and

if N · F = A oB, then N contains M = {f ∈ F | τ(f) ∈ A′}.

Example 18. Let X1,X2 ⊆ S, X1 ∩ X2 = ∅, X1 ∪ X2 = S, X1 6= ∅, X2 6= ∅.
We will show that SL(X1) 6= L(X2) and UL(X1) 6= L(X2). Assume that

G1 ∈ X1 and G2 ∈ X2.

Assume that G2 is nonabelian. We will show that G2 oG1 ∈ SL(X1). Assume

that L(X1)(G2 o G1) 6= 1. Then 1 6= L(X1)(G2 o G1) C G2 o G1. Since

L(X1)(G2 oG1) is not contained in the base group F of G2 oG1 it follows that

F · L(X1)(G2 oG1) = G2 oG1. Proposition 17 now shows that L(X1)(G2 oG1)

contains

M = {f ∈ F | τ(f) ∈ G′2} = {f ∈ F | τ(f) ∈ G2} = F.

Hence L(X1)(G2 o G1) = G2 o G1, so G2 o G1 ∈ L(X1), contrary to Example

15.

We thus get SL(X1) 6= L(X2), so certainly L(X2) & SL(X1).

Now assume that X2 is a class of abelian simple groups. So G2 is a

cyclic group of order p, where p ∈ P. We will show that G2 o G1 ∈ SL(X1).

Assume that L(X1)(G2 oG1) 6= 1. Then 1 6= L(X1)(G2 oG1) C G2 oG1. Since

L(X1)(G2 oG1) is not contained in the base group F of G2 oG1 it follows that

F · L(X1)(G2 oG1) = G2 oG1. Proposition 17 now shows that L(X1)(G2 oG1)

contains

M = {f ∈ F | τ(f) ∈ G′2} = {f ∈ F | τ(f) = 1}.

If p 6 5, then we take G1 = A5. If p > 5, then we take G1 = Ap. Then

N = {f ∈ F | f(b) = f(1) for all b ∈ G1} ⊆M

and G2
∼= N C G2 o G1, so G2

∼= N C L(X1)(G2 o G1). Then G2 is a

composition factor of L(X1)(G2 oG1), contrary to Example 15.

We thus get L(X1)(G2 o G1) = 1. So G2 o G1 ∈ SL(X1), and certainly

L(X2) & SL(X1).
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Moreover, since G2 oG1 ∈ SL(X1), if follows that SL(X1) 6= UL(X1). In fact,

(G2 oG1)/F ∼= G1 ∈ L(X1)

In general, for a radical class γ, γ(A) does not always contain all subgro-

ups of A which are in γ. We now consider radical classes for which this is

the case.

Definition 19. (Kurosh) A radical class γ is strict if B 6 γ(A) whenever

B ∈ γ and B 6 A.

Definition 20. A class σ is strongly hereditary if all subgroups of groups in

σ are in σ.

Theorem 21. (Kurosh) Let γ be a radical class with semisimple class σ.

Then γ is strict if and only if σ is strongly hereditary.

Theorem 22. (Kurosh) Let M be a strongly hereditary class of groups. Then

U(M) is a strict radical class.

Theorem 23. The only strict radical classes of groups closed respect to nor-

mal subgroups are {1} and the class of all groups.

Proof. Let γ 6= {1} be a strict radical class closed respect to normal subgro-

ups. If 1 6= G ∈ γ then all the composition factors of G belong to γ. We will

show that S ⊆ γ.

Let G1, G2 be simple groups, G1 ∈ γ and G2 6∈ γ.

Assume that G2 is nonabelian. We will show that G2 o G1 ∈ Sγ. Assume

that γ(G2 oG1) 6= 1. Then 1 6= γ(G2 oG1) C G2 oG1. Since γ(G2 oG1) is not

contained in the base group F of G2 oG1 it follows that F ·γ(G2 oG1) = G2 oG1.

Proposition 17 now shows that γ(G2 oG1) contains

M = {f ∈ F | τ(f) ∈ G′2} = {f ∈ F | τ(f) ∈ G2} = F.

Hence γ(G2 oG1) = G2 oG1, so G2 oG1 ∈ γ.

Since γ is closed respect to normal subgroups, it follows that G2 ∈ γ, contrary

to the assumption. So γ(G2 oG1) = 1 and G2 oG1 ∈ Sγ. Since Sγ is strongly

hereditary it follows that G1 ∈ Sγ, contrary to the assumption.

Therefore if G is a nonabelian simple group then G ∈ γ.
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Then G2 is abelian and so G2 is a cyclic group of order p, where p ∈ P.

We will show that G2 o G1 ∈ Sγ. Assume that γ(G2 o G1) 6= 1. Then

1 6= γ(G2 oG1) C G2 oG1. Since γ(G2 oG1) is not contained in the base group

F of G2 o G1 it follows that F · γ(G2 o G1) = G2 o G1. Proposition 17 now

shows that γ(G2 oG1) contains

M = {f ∈ F | τ(f) ∈ G′2} = {f ∈ F | τ(f) = 1}.

It evident that M is a normal subgroup of G2 oG1, so M C γ(G2 oG1).

If p 6 5, then we take G1 = A5. If p > 5, then we take G1 = Ap. Then

N = {f ∈ F | f(b) = f(1) for all b ∈ G1} ⊆M

and

G2
∼= N C G2 oG1, so G2

∼= N C γ(G2 oG1).

Since γ is closed respect to normal subgroups it follows that G2 ∈ γ, contrary

to the assumption.

We thus get γ(G2 oG1) = 1. So G2 oG1 ∈ Sγ. Since Sγ is strongly hereditary

it follows that G1 ∈ Sγ1 contrary to the assumption.

Therefore S ⊆ γ and by Example 15 γ = F.

Remark. The theorem above was proved by Gardner in the situation when

the universal class is the class of all groups. He used a free product of groups

in the proof (see [6]).

Example 24. There are nontrivial strict radical classes of groups.

If γ is the class of solvable groups, then by Theorem 22 U(γ) is a strict

radical class.

If γ is the class of p-groups, then U(γ) is a strict radical class.

Definition 25. A group G is unequivocal if γ(G) = G or 1 for every radical

class γ.

Theorem 26. A group G is unequivocal if and only if all its composition

factors are isomorphic.

Problem 1. [12] (Kurosh) Give the complete description of all radicals in

the class of all groups.
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Problem 2. [12] (Kurosh) Give the complete description of all radicals in

the class of finite groups.

Problem 3. (Kurosh-like) Give the complete description of all radicals in

the class of finite solvable groups.

Problem 4. ([9] Ouestion 13.51) (A. N. Skiba) Is every finite modular lattice

embeddable in the lattice of formations of finite groups?

We still know fairly little about the Fitting classes generated by arbitrary

groups. Even the problem about the structure of the smallest Fitting class

containing S3 (symmetric group of degree three) still remains open [10].

Problem 5. Determine the smallest Fitting class containing S3.

Definition 27. Let χ and X be non-trivial classes Fitting classes of finite

solvable groups such that χ ⊆ X. Then χ is said to be normal in X if an

χ-injector of G is a normal subgroup of G for every G ∈ X.

In the paper [14] S. Reifferscheid established the existence of a unique ma-

ximal subgroup-closed Fitting class in which a given subgroup-closed Fitting

class χ is normal. The dual problem, that is, the existence of a unique mi-

nimal subgroup-closed Fitting class being normal in a given subgroup-closed

Fitting class X is still open question.

Problem 6. Does there exist a unique minimal subgroup-closed Fitting class

being normal in a given subgroup-closed Fitting class X ?
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