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A Relative Expression Analysis (RXA) uses ordering relationships in a small collection of genes and is successfully applied to
classiffication using microarray data. As checking all possible subsets of genes is computationally infeasible, the RXA algorithms
require feature selection and multiple restrictive assumptions. Our main contribution is a specialized evolutionary algorithm (EA)
for top-scoring pairs called EvoTSP which allows finding more advanced gene relations. We managed to unify the major variants
of relative expression algorithms through EA and introduce weights to the top-scoring pairs. Experimental validation of EvoTSP
on public available microarray datasets showed that the proposed solution significantly outperforms in terms of accuracy other
relative expression algorithms and allows exploring much larger solution space.

1. Introduction

Extracting accurate and simple rules that exploit marker
genes is crucial in understanding and identifying casual
relationships between specific genes. Finding a meaningful
and robust classification rule is a real challenge; especially
when in different studies of the same cancer, diverse genes
are considered to be marked [1, 2].

A Relative Expression Analysis (RXA) was firstly pro-
posed by Geman et al. in [3] and represents simple yet
powerful set of classifiers. It is based on the relative orderings
among the expressions of a small number of genes. Instead of
using expression values directly, only ranks of the expression
data are used, making the algorithms insensitive to data
normalization procedures. Moreover, use of the ordering
relationships for a small collection of genes has potential for
identification of gene-gene interactionswith plausible biolog-
ical interpretation and direct clinical applicability [4]. Major
and well-known drawback of RXA is a high computational
complexity, which grows exponentially with the size of the
collection of genes.

In this paper, we propose an Evolutionary Top-Scoring
Pairs (EvoTSP) solution that combines the power of evo-
lutionary approach with simplicity of relative expression
algorithms.Wemanaged to unify different top-scoring exten-
sions, limit their restrictions, and with application of EA

explore larger solution space. We have also changed the
unweighted TSP voting, by introducing the weights of each
gene pair.

The rest of the paper is organized as follows. In the next
section the relative expression algorithms are briefly recalled.
Section 3 describes our motivation and Section 4 presents
in detail the EvoTSP solution. Next, experimental validation
on real-life microarray datasets is performed. The paper is
concluded in the last section where possible future works are
also sketched.

2. Background

The first and the most popular solution from RXA is called
Top-Scoring Pair (TSP) [3]. It is based on pairwise compar-
isons of gene expression values. Discrimination between two
classes depends on finding one pair of genes that achieves the
highest ranking value called “score.”

Consider a gene expressionmicroarray dataset consisting
of 𝑃 genes and 𝑀 samples. Let the data be represented
as a 𝑃 × 𝑀 matrix in which an expression value of 𝑖th
gene from 𝑗th sample is denoted as 𝑥

𝑖𝑗
. Each row represents

observation of a particular gene over𝑀 training samples, and
each column represents a gene expression instance composed
from𝑃 genes. Let us for the simplicity of presentation assume
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where |𝐶
1
| denotes the number of instances from class𝐶

1
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𝐼(𝑥
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𝑗𝑚
) is the indicator function defined as
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(2)

TSP is a rank-based method; therefore, for each pair of genes
(𝑖, 𝑗) the “score” denoted Δ

𝑖𝑗
is calculated as

Δ
𝑖𝑗
=

𝑝
𝑖𝑗
(𝐶
1
) − 𝑝
𝑖𝑗
(𝐶
2
)

. (3)

In the next step, the algorithm chooses a pair with the highest
score. There should be only one top pair in the TSP method;
however, it is possible that multiple gene pairs achieve the
same top score. In that case a secondary ranking proposed
in [5] is used to eliminate draws. It is based on the rank
differences in classes and samples.

In the literature, the TSP solution is extended in several
directions, each having its pros and cons. In one of the first
extensions called 𝑘-TSP [5] the number of top-scoring pairs
included in the final prediction was increased. The classifier
uses no more than 𝑘 top scoring disjoint gene pairs that
have the highest score. The parameter 𝑘 is determined by the
internal cross-validation and the simple majority vote is used
to make the final decision.

Different approach for the TSP extension is discussed
in [4] where authors instead of using several pairs of genes
compare relationships for three genes. A three-gene version
of RXA called Top-Scoring Triplet (TST) [4] was proposed
as potentially more discriminating than TSP since there
are six possible orderings that must be analyzed. With
the TST solution authors successfully predict the germline
BRCA1 mutations in breast cancer. This method was later
extended in [6] where general idea of pairwise or triplet
rank comparisons was proposed. The top-scoring N (TSN)
algorithmuses generic permutations and dynamically adjusts
the size to control both the permutation and combination
space available for classification. Variable𝑁 denotes the size
of the classifier; therefore, in case 𝑁 = 2 the TSN algorithm
simply reduces to the TSP method and when 𝑁 = 3, the
TSN can be seen as TST.The classifier’s size can be defined by

user or by internal cross-validation that checks classification
accuracy for different values of 𝑁 (on a training data, in a
range specified by the user) and selects the classifier with the
highest score.

A hybrid solution of 𝑘-TSP and a top-down induced
decision tree is proposed in [7]. In each node of the decision
tree called TSPDT a test analogous to the 𝑘-TSP method
is searched. Then, the set of instances is divided according
to decision of the best pair (or pairs) of genes in the
current node and next; each derived subset goes to the
corresponding branch. The process is recursively repeated
for each branch until leaf node is reached. This solution
was recently extended by global induction of decision tree
called GTSPDT [8]. Preliminary experiments showed that
this hierarchical evolutionary method can also be a good
alternative to traditional relative expression algorithms.

Figure 1 illustrates the extensions of the relative expres-
sion algorithms. We can observe that EvoTSP unifies two
main extensions of the TSP solution: application of multiple
pairs of genes instead of one and comparison relationships for
more than two genes.

There exist other solutions in RXA likeWeight 𝑘-TSP [9]
which focuses on the ratio of two genes in order to find more
accurate top-scoring pairs. Different look at ranking the genes
in microarray classification was also proposed in [10].

The RXA can be used as a feature selection in more com-
plex classifiers [11–13] and as a protein expression classifier
[14]. Multiple implementations of TSP-family solutions may
be found as𝑅package [15] or as a stand-alone application [16].

3. Motivation

The first drawback of RXA is the enormous computational
requirement as the complexity of aforementioned algorithms
is 𝑂(𝑘 ∗ 𝑃𝑁), where 𝑘 is the number of top-scoring groups,
𝑃 is the number of features, and 𝑁 is the size of group of
genes with which ordering relationships are compared. In
the literature, there are some attempts of improving TSP
performance by parallelization of the algorithmusing graphic
processing unit (GPU) for calculations [17]. Although the
improvement is significant, the parameter 𝑘 or/and 𝑁 still
must be small—the highest tested value of𝑁 equals 4with 𝑘 =
1 and only when 𝑃 was significantly reduced by the feature
selection. This illustrates how computationally demanding
RXA is.

Finding accurate values of the parameters 𝑘 and𝑁 is the
secondproblem.TheTSP extensions define themadhoc or by
internal cross-validation. The first way is strongly dependent
on analyzed dataset and the second one is extremely time
consuming and decreases the size of the training dataset
which is usually very small in case of microarray data. In
addition, it is not clear which extension should be preferred:
𝑘-TSP or TSN. It should be noted that the 𝑘-TSP algorithm
cannot be replaced by the TST as 𝑘-TSP has restrictions to
use only disjoint gene pairs. On the other side, the 𝑘-TST or
𝑘-TSN was not even analyzed in the literature, probably due
to its computational complexity.

In this paper, we would like to limit aforementioned
drawbacks of TSP extensions through the evolutionary
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Figure 1: Evolution of the relative expression algorithms.

approach. Our goal is to improve classification accuracy and
identification of marker genes interactions. We let the EA
to search for the best multiple pairwise comparisons of the
gene expression values. The number of top-scoring pairs 𝑘 is
determined also by the evolution and with no restrictions on
disjoint gene pairs; EvoTSP may compare relationships for
more than two genes like in TSN. Application of EA to the
RXA allows exploring larger solution space with reasonable
computation time.

4. Evolutionary Top-Scoring Pairs

In this section, we would like to propose EvoTSP—an
evolutionary algorithm for top-scoring pairs. Evolutionary
algorithms [18] belong to a family of metaheuristic methods
which represent techniques for solving a wide variety of
difficult optimization problems. The general framework of
EA (see Figure 2) is inspired by biological mechanisms of
evolution. The algorithm operates on a population of indi-
viduals and each individual represents a candidate solution
to the target problem. Individuals are assessed using a quality
measure named the fitness function which measures their
performance and those with higher fitness are usually more
often selected for reproduction. Genetic operators such as
mutation and crossover modify new generations of individ-
uals, producing new offspring. This guided random search
(offspring usually inherits some traits from its ancestors) is
stopped when some convergence criteria are satisfied.

4.1. Representation and Initialization. Each individual is rep-
resented in its actual form as a potential solution. It is
composed of a group of 𝑘 top-scoring pairs similarly to 𝑘-TSP.
As there are no restrictions on disjoint gene pairs, the EvoTSP

Initialize the population

Evaluate solutions in
the population

Convergence
criteria
satisfied?

No

Yes

Evolution

Apply genetic
operators to

generate new
solutions

Perform
competitive

selection

Figure 2: A general framework of evolutionary algorithm.

is able to represent the TST solution with the 2 top-scoring
pairs that involve only three genes. In the analogous way,
TSN, 𝑘-TSP, or even variations of 𝑘-TSN can be represented
in EvoTSP.

In this paper, we also propose additional parameter 𝑟 for
each pair of genes that represents its weight. This way, some
gene pairs have higher influence than others on the final
decision. This idea is completely new in TSP as aforemen-
tioned algorithms used a simple majority voting where each
top-scoring pair’s vote has the same weight. The purpose of
using unweighted voting in TSP and all its extensions was
probably directed by the necessity of limiting computational
requirements. Figure 3 shows an example EvoTSP model,
which includes possible representation of 𝑘-TSP and the TST
solution.
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Figure 3: An example representation of EvoTSP model.

We could generate initial population randomly to cover
the entire range of possible solutions; however, due to the
large solution space, we decided to speed up evolutionary
search and seed initial population with good solutions
(default number of individuals in population equals 100).

Each initial individual has a randomnumber of gene pairs
(0 < 𝑘 ≤ 5) created with the mixed dipole strategy [19]
and constructed as follows. Among feature vectors located
in the node two objects from different classes are randomly
chosen.Next, an effective top-scoring pair is constructedwith
2 randomly selected genes. By the effective top-scoring pair,
we understand the pair of genes which separates two objects
from different classes. In other words, genes 𝑖 and 𝑗 can
constitute effective top-scoring pair only if there are at least
two instances 𝑞 and 𝑤 that are from different classes and one
of the relations is satisfied:

𝑥
𝑖𝑞
> 𝑥
𝑗𝑞
, 𝑥

𝑖𝑤
≤ 𝑥
𝑗𝑤
, (4)

or the opposite:

𝑥
𝑖𝑞
≤ 𝑥
𝑗𝑞
, 𝑥

𝑖𝑤
> 𝑥
𝑗𝑤
. (5)

This operation is repeated until 𝑘 pairs is selected. All created
gene pairs have equal weights (parameter 𝑟

𝑖
= 1 where 𝑖 =

1, . . . , 𝑘). With this strategy we are able to limit the number
of initial individuals which select only one class.

4.2. Fitness Function. Fitness function is one of the most
important and sensitive elements in the design of the evolu-
tionary algorithm. It drives the evolutionary search process
by measuring how good a single individual is in terms
of meeting the problem objective. Direct minimization of
prediction error measured on the learning set usually results
in overfitting and leads to spurious results.

In case of EvoTSP, we need to balance the error of
classification and the number of genes that build the classifier.
We have applied a similar idea that was used in the cost
complexity pruning in the CART system [20]. The fitness
function is maximized and has the following form:

Fitness = 𝑄Reclass − 𝛼 ∗ (2 ∗ 𝑘 + 𝑢) , (6)

where 𝑄Reclass is the reclassification quality on the training
set, 𝑘 is the number of gene pairs, and 𝑢 is the number of

unique genes in top-scoring pairs that were used to build the
classifier. The 𝛼 parameter is the relative importance of the
complexity term specified by user (default value is 0.005).
Penalty associated with the classifier complexity increases
proportionally with the number of genes that constitute the
top-pairs. To reduce overfitting and to encourage searching
relation between more than two genes, unique genes are
doubly penalized. It should be noticed that there is no optimal
value of 𝛼 for all possible datasets and tuning it may improve
classifier results for specific problem. Further research on
setting this parameter automatically on a particular training
data is planned.

4.3. Genetic Operators. To maintain genetic diversity, two
specialized genetic operators corresponding to the classical
cross-over and mutation were applied. Each evolutionary
iteration starts with selecting individuals from the population
that will be affected by the genetic operators. Probability of
applying a cross-over operator equals 0.5 for each individual.
With the same probability a mutation operator can also
be applied. Next, one of the variants of genetic operator is
selected.

We propose two variants of recombination:
(i) a randomly chosen pair of genes is exchanged

between two affected individuals. Probability of pairs
to exchange equals 0.9;

(ii) a randomly chosen pair from the best individual
founded so far replaces a random pair from the
affected individual. In this variant only one individual
is modified and the probability of this variant equals
0.1.

If the mutation operator is chosen, one of the variants
with equal probability of being drawn is applied to the
individual:

(i) add a new pair of genes created with the mixed dipole
strategy;

(ii) remove randomly chosen pair;
(iii) replace randomly chosen pair by the new one created

with the mixed dipole strategy;
(iv) exchange one feature from randomly chosen pair;
(v) increase/decrease the weight of the randomly chosen

pair (by multiplying or dividing by 2);
(vi) switch the relation sign among randomly chosen pair.

4.4. Selection and Termination Condition. Ranking linear
selection [18] is applied as a selection mechanism. In each
iteration, a single individual with the highest value of fitness
function in current population is copied to the next one (elitist
strategy). In addition, this strategy is partially boosted by
possible cross-over of individuals from current population
with the best individual founded so far. Evolution terminates
when fitness of the best individual in the population does not
improve during fixed number of generations (default value:
1000). In case of a slow convergence, maximum number of
generations is also specified (default value: 10000), which
allows us to limit the computation time.



The Scientific World Journal 5

Table 1: Details of tested gene expression datasets.

Datasets Number of features Number of instances
GDS2771 22215 192
GSE10072 22284 107
GSE17920 54676 130
GSE19804 54613 120
GSE25837 18631 93
GSE27272 24526 183
GSE3365 22284 127
GSE6613 22284 105

5. Results and Discussions

In this section, all performed experiments are presented. At
first, we share some details about datasets and settings of
tested algorithms. Next, we validate and discuss the overall
performance of EvoTSP solution and its competitors with
respect to classification accuracy and its size.

5.1. Datasets and Setup. Performance of classifiers was
investigated on several public available microarray datasets
deposited in NCBI’s Gene Expression Omnibus [21] and
summarized in Table 1. All datasets are binary classification
problems and mainly refer to the studies of human cancer.
As the data was not predivided we used typical 10-fold cross-
validation as it was the only option in AUREA software [16].

We confront EvoTSPwith three competitors: the primary
solution TSP and its two main extensions: 𝑘-TSP and TST
(TSN with 𝑁 = 3). To obtain comparison results, we used
the AUREA software, which is an open-source system for
identification of relative expressionmolecular signatures [16].
Classification was performed with default parameters for all
algorithms through all datasets and to ensure stable results
average score of 20 runs is shown. A statistical analysis
of all obtained results was performed with the Friedman
test and the corresponding Dunn’s multiple comparison test
(significance level equal to 0.05) as recommended by Demšar
[22].

The AUREA software sets the maximum number of top-
scoring pairs (parameter 𝑘) for 𝑘-TSP to 10 by default. In
addition, all algorithms except EvoTSP operate on a subset of
genes for analysis based on the differential expression of the
presented gene set (the Wilcoxon signed-rank test was used
to choose themost differentially expressed genes between the
defined classes). Authors [16] state that this feature selection
step have dramatic effect on the computational complexity
of the algorithms and by limiting the set of genes, problem
of over-fitting can be mitigated. In case of EvoTSP we have
decided not to use any feature selection and allow searching
for relations through all high and low-ranked genes.

5.2. Comparison of Top-Scoring Family Algorithms Methods.
Table 2 summaries classification performance for the pro-
posed solution EvoTSP and its competitors: TSP, TST, and
𝑘-TSP. The model size of TSP and TST is not shown as it

is fixed and equals correspondingly 2 and 3. We had to use
approximation of 𝑘-TSP size as AUREA software did not
allow checking the 𝑘 value during cross-validation; therefore,
the value of 𝑘 on full dataset treated as a training set is
presented.

Results show that, in general, the existing extensions,
TST and 𝑘-TST, outperform TSP in terms of accuracy. The
price for better performance is the higher complexity of the
classification model, which for 𝑘-TSP is 5.75 times higher (an
average value from 8 datasets) than TSP size and almost 4
times than TST. Slightly larger size of classification model is
not a problem, as all tested algorithms are simple to analyze;
however, checking several different genes per model may be
considered difficult in biological interpretation, which is the
case for 𝑘-TSP.

In the last two columns of Table 2 we present the results
of the proposed solution. We can observe that the accuracy
of the classifier in 6 out of 8 datasets is the highest. However,
for the last two databases EvoTSP accuracy score is slightly
lower than 𝑘-TSP. Additional experiments showed that the
convergence of EA in EvoTSP is too slow for that particular
set. When the maximum number of generation in EA was
increased, the proposed algorithm managed to have similar
or even outperform 𝑘-TSP on both datasets.

According to the Friedman test, there is a statistically
significant difference (𝑃 value of 0.0003) in the accuracy
of all versions. Based on Dunn’s Multiple Comparison Test
Difference, there is a statistically significant difference in
classification quality between EvoTSP, TSP, and the TST
algorithm. Although there were no statistical differences
in accuracy between EvoTSP and 𝑘-TSP, there is one in
the size of their models. The size of classification model
of proposed solution remains small, in contrast to 𝑘-TSP,
making the EvoTSP a good tool for identifying gene-gene
interactions with direct clinical applicability. In Table 2 we
can also observe that the standard deviation of accuracy for
solutions was on similar level.

Total time to build an EvoTSP model varies between 1
and 8 minutes on a typical PC (Intel Core I5, 4GB RAM),
depending on the dataset and it is few times longer than
for AUREA software which was from tens of seconds to
a minute. However, it should be noted that EvoTSP works
without any feature selection which is a must for AUREA
software (checking of all combinations of pairs would take
many orders of magnitude more).

6. Conclusion

In this paper, we propose the EvoTSP system for solving
classification problems using microarray data. Our approach
is a hybrid solution that combines the power of EA and
relative expression algorithms. We have designed several
variants of specialized operators to mutate and cross-over
individuals and a fitness function that helps mitigating the
overfitting problem.With the newweighted gene pairs voting
and extended representation of top-scoring pairs that involve
different variants of TSP,wewere able to significantly improve
TSP accuracy with still relatively small size of classification
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Table 2: Comparison of top-scoring algorithms, including accuracy with its standard deviation and the number of unique genes that build
classifier’s model.

Datasets TSP TST 𝑘-TSP EvoTSP
Accuracy Accuracy Accuracy Size Accuracy Size

GDS2771 57.2 ± 2.4 61.9 ± 2.8 62.9 ± 3.3 10 65.6 ± 2.0 4.0
GSE10072 88.7 ± 2.6 89.4 ± 2.1 90.1 ± 2.5 6 96.5 ± 1.3 2.1
GSE17920 64.9 ± 3.5 63.7 ± 4.7 67.2 ± 3.2 10 78.1 ± 2.6 2.8
GSE19804 93.5 ± 1.7 92.8 ± 1.5 94.1 ± 1.6 10 96.2 ± 1.1 2.1
GSE25837 56.0 ± 4.0 60.5 ± 5.1 58.4 ± 4.0 14 66.9 ± 5.6 3.1
GSE27272 47.3 ± 4.8 50.1 ± 3.8 56.2 ± 2.2 18 66.2 ± 1.1 2.7
GSE3365 81.9 ± 2.6 84.2 ± 2.7 87.2 ± 2.1 14 86.1 ± 2.8 4.1
GSE6613 49.5 ± 3.5 51.7 ± 2.8 55.8 ± 5.3 10 53.6 ± 5.4 6.1
Average 67.4 ± 3.3 69.3 ± 3.2 71.5 ± 3.0 11.5 76.2 ± 2.7 3.4

model. Application of EAs allows exploring much larger
solution space and searching for different, more complex
relations between genes.

In this paper we only focus on the general concept of
EvoTSP as an effective tool; therefore, we do not enclose
any biological aspects of the rules generated by proposed
system or case studies on particular datasets. Furthermore
improvement is still required especially in terms of fitness
functions to handle cost-sensitive and multiclass problems.
Speeding up the convergence of the EA is also desirable
and can be achieved by application of local optimizations
(memetic algorithms), new specialized operators, and self-
adaptive parameters. Finally, more work on preprocessing
datasets, gene selection, and using additional problem-
specific knowledge is also required to improve EvoTSP
classification accuracy and rule discovery.
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