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Abstract. Decision trees (DTs) are popular techniques in the field of
explainable machine learning. Traditionally, DTs are induced using a
top-down greedy search that is usually fast; however, it may lead to sub-
optimal solutions. Here, we deal with an alternative approach which is
an evolutionary induction. It provides global exploration that results in
less complex DTs but it is much more time-demanding. Various parallel
computing approaches were considered, where GPU-based one seems to
be the most efficient. To speed up the induction further, different GPU
memory organization/layouts could be dealt with.

In this paper, we introduce a compact in-memory representation of
DTs. It is a one-dimensional array representation where links between
parent and children tree nodes are explicitly stored next to the node data
(testes in internal nodes, classes in leaves, etc.). On the other side, when
the complete representation is applied, children positions are calculated
based on the parent place. However, it needs a spacious one-dimensional
array as if all DT levels would be completely filled, no matter if all nodes
actually exist. Experimental validation is performed on real-life and arti-
ficial datasets with various sizes and dimensions. Results show that by
using the compact representation not only the memory requirements are
reduced but also the time of induction is decreased.

Keywords: Evolutionary data mining · Decision trees · Compact
in-memory representation · Graphics processing unit (GPU) · CUDA

1 Introduction

Explainable Machine Learning (XML) [2] is a new subfield of Machine Learning
(ML) that aims to explain how ML models make predictions. Until recently, most
research has focused on the predictive power of algorithms rather than on under-
standing rationale behind these predictions. The revival in this field reflects, as it
were, an interest in and demand for understandable and interpretable methods
for real-world applications. A learning model, to qualify as an XML algorithm,
should be understandable using concepts related to human intelligence.

Decision trees (DTs) form a class of models that generally fall into the XML
category. They are usually induced by top-down greedy methods. Such an induc-
tion is usually fast; however, it can lead to sub-optimal solutions [1]. One of the
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alternative approaches is the use of evolutionary algorithms (EAs). The incorpo-
ration of EAs into the DT induction allows for global solution-space exploration,
leading to better solutions, that is, generated trees are much simpler and at least
as accurate as those induced with traditional methods. Moreover, evolutionary
induced DTs are less prone to overfitting, instability to changes in training data
and attribute-selection bias [14]. At the same time, EA approach in the DT
induction brings new challenges. Population-based and iterative calculations may
be time-demanding, or even unachievable for big data [1,7,10].

To speed up the evolutionary induction of DTs, different parallel computing
approaches were studied [10]. In this paper, we focus on the GPU-supported
one that appeared to be the most efficient [6,7]. To boost the induction calcula-
tions we investigated different GPU memory layouts and representations, and we
would like to propose a compact in-memory representation of DTs. It uses a one-
dimensional array where links (corresponding to tree branches) between parent
and children nodes are explicitly stored. In comparison to (previous) complete
representation, it only holds the nodes that actually exist. There is no need to
store all nodes as if all DT levels would be completely filled, no matter if a node
really exists. We experimentally show that the compact representation not only
saves memory resources but also speeds up the induction further.

The next section gives a brief overview of DTs, the ways of their induction
as well as describes the Global Decision Tree (GDT) system that serves as the
framework for our solution. Section 3 describes the GPU-boosted solution using
the compact in-memory representation. Section 4 provides the evaluation, while
Sect. 5 includes the conclusion and possible future works.

2 Background

2.1 Decision Trees

Despite more than 50 years of research [11], DTs are still being developed to
address the various challenges they continue to face. They can be used as stand-
alone single-tree solutions or as part of larger models such as random forests and
gradient boosted DTs. In the latter case, however, it is not possible to speak of
XML models, because in the pursuit of greater accuracy, the ease of interpreting
and understanding ensemble models has been lost.

A typical DT consists of nodes and branches (see Fig. 1), where: each inter-
nal node is associated with a test on one or more attributes; each branch repre-
sents a test result, and each leaf (terminal node) contains a prediction [9]. Most
tree-inducing algorithms partition the feature space using axis-parallel hyper-
planes. Trees of this type are often called univariate because the test at each
non-terminal node usually involves a single attribute that is selected according
to the given goodness of split. Multivariate tests, which are generally based on
linear combinations of many dependent qualities, are also used in some algo-
rithms. The oblique split causes a non-orthogonal hyperplane to partition the
feature space in a linear manner. DTs that enable multiple features to be tested
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Fig. 1. An example of univariate
decision tree.

Fig. 2. Flowchart of the typical evolu-
tionary algorithm.

at a node may be smaller than those confined to single univariate splits, but they
have a substantially higher computing cost and are often difficult to interpret.

To make a prediction forecast, the new instance is followed down from a root
node to a leaf, with the attribute values of each internal node being used to
determine which branch to choose. The terminal node reflects the problem to
which the DT is applied. In the case of classification trees, we are concerned
with assigning a decision (class label) to each leaf. Typically, this is the class of
the majority of all training instances that go into a given leaf. For the regression
problem, DT models are used to approximate real-valued functions, so each leaf
contains either a constant value or some linear (or nonlinear) regression model.

2.2 Decision Tree Induction

The complexity of inducing an optimal DT is NP-complete [5]. Therefore, heuris-
tic improvements to practical DT learning algorithms are needed [9,11]. One of
the major changes proposed in recent years for DTs concerns the induction pro-
cess which has traditionally relied on a greedy partitioning strategy. Originally,
the algorithm starts with a root node where a locally optimal split (test) is
searched for based on a given criterion. The training instances are then redi-
rected to the newly constructed nodes, and the procedure is repeated until a
stopping condition is satisfied for each node. Furthermore, post-pruning is often
used after induction to avoid the problem of over-fitting the training data and to
improve the generalization ability of the predictive model. CART and C4.5/5.0
are the two most commonly applied top-down DT inducers.

To limit the impact of local, sub-optimal splits, alternative approaches based
on metaheuristics, such as evolutionary algorithms (EAs), have been introduced
to the tree induction process [1]. EAs belong to a family of meta-heuristic meth-
ods and represent techniques for solving a wide range of difficult optimization
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problems [12]. The general framework (see Fig. 2) is based on biological evolution
mechanisms. The typical EA works on the individuals, gathered in a population,
that represent potential solutions to the target problem. In each evolutionary
iteration, individuals are:

• transformed with genetic operators such as mutation and crossover that pro-
duce new offspring;

• evaluated according to a measure named the fitness function which determines
its score;

• selected for reproduction - individuals with better fitness individuals being
reproduced more frequently.

When the convergence criteria are met, the evolutionary loop is terminated.
The strength of the evolutionary approach lies in the global search in which

tree structure and tests in internal nodes are searched simultaneously. It has
been shown that evolutionary induced decision trees offer better suited, more
stable, and simpler prediction models [1,10]. Of course, such a global induction
is clearly more computationally demanding, but it can reveal underlying patterns
that greedy approaches generally miss.

2.3 Global Decision Tree System

The proposed solution has been integrated into a system called the Global Deci-
sion Tree (GDT) [10]. The family of algorithms based on the GDT framework is
very diverse and addresses almost every aspect related to evolutionary induced
DTs like problem domain (classification, regression), tree representation (univari-
ate, oblique, mixed), search (cost-sensitive, Pareto, memetic), real-world appli-
cation (finance, medicine), parallelization and more [3,8].

GDT’s overall structure is based on a typical EA schema [12] with an unstruc-
tured population and generational selection. The individuals are represented in
their actual form as potential solutions using a tree-encoding schema. Initializa-
tion is performed in a simple greedy top-down manner with randomly selected
samples of the training data. This way the population is fed with average solu-
tions that should keep an initial balance between exploration and exploitation.

The selection mechanism is based on a ranking linear selection [12] with
the elitist strategy, which copies the best individual found so far to the next
population. Evolution terminates when a maximum number of generations is
reached (default: 10 000) or the fitness of the best individual in the population
does not improve during a fixed number of generations (default: 1 000).

To preserve genetic diversity, the GDT system applies two specialized meta-
operators corresponding to the classical mutation and crossover. Both operators
may have a two-level influence on the individuals as either the decision tree
structure or a test in the splitting node can be modified. The type of node
(internal, leaf), position in the tree (upper or lower parts), and node prediction
error is taken into account to determine the crossover/mutation point. This way
low quality nodes (or leaves) in the bottom parts of the tree are modified more
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Fig. 3. General idea of the GPU-
accelerated evolutionary induction. On
the GPU, side the training dataset
calculations are performed, while the
CPU controls the evolution.

Fig. 4. Flow chart of updating an
individual when a genetic operator is
applied, including CPU-GPU commu-
nication, memory allocation and ker-
nels’ execution.

often. GDT offers dozens of specialized variants of crossover/mutations [10],
often specific to the DT representation and problem domain, but the generic
ones cover: (i) pruning nodes and expanding leaves; (ii) replacing, modifying or
exchanging subtrees, branches, nodes, tests. New tests are created according to
the dipolar strategy. A dipole is a pair of objects used to find the effective test.

The fitness function controls the accuracy and complexity of each individual.
GDT offers various multi-objective optimization strategies [10]. Among them a
weighted formula is the most universal one as it maximalizes the following fitness
function: Fitness(T ) = Q(T )−α∗Complexity(T ), where: Q(T) is the accuracy
calculated on the training set, Complexity(T) is the tree complexity calculated
as the sum of leaves and α is the relative importance of the complexity term
(default: 0.001) and it is a user-supplied parameter.

3 GPU-Supported Evolution Using Compact In-Memory
Representation of Decision Trees

The general idea of the GPU-supported solution (called cuGDT) is illustrated in
Fig. 3. The most time-consuming operations (like fitness calculations or searching
objects for dipoles, which are directly related to the training dataset) are isolated
and delegated to the device [6]. The evolutionary induction is controlled by a
CPU. Such a construction of cuGDT ensures that the parallelization does not
affect the behavior of the original EA.
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Fig. 5. Complete vs. compact one-dimensional array in-memory representation of a
decision tree. Dotted lines indicate sample links between parent and children nodes. In
the compact representation, each tree node contains three additional elements: array
indexes of the left child, right child and parent nodes. In the complete representation,
a parent node and its descendants can be found using the mathematical formula.

The dataset is transferred to the device before the evolution starts and it
is kept till the evolutionary induction stops. This transfer time is negligible in
relation to the evolution time. It was a conscious design decision to reduce the
bottleneck of host/device memory transfers. However, this forced us to perform
most of the dataset-related operations on the device, not only related to fit-
ness calculations but also to searching for optimal splits. The CPU does not
have direct access to the training dataset, it only receives sample objects to
construct dipoles. During the evolution, the transfer between host and device
includes sending the individuals to the GPU and sending back the results (class
distribution, errors and objects for dipoles) to the CPU.

3.1 In-Memory Representation of Decision Trees

In the evolutionary loop, each time the genetic operator is successfully applied,
the GPU is asked to help the CPU (see Fig. 4). Before transferring the modified
individual, its flat representation is created based on its tree-like (using pointers)
host representation (see Fig. 5). A one-dimensional array is built and then sent
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to the device. A complete in-memory representation was previously used [6–8].
It did not require explicitly storing the links (as array indexes) between a parent
node and its children. A simple mathematical formula was used to indicate the
array indexes of children nodes or a parent node. The array index of the left
child of the i -th node equals (2 ∗ i + 1), while for the right child, it is (2 ∗ i + 2).
Unfortunately, the complete representation imposed to reserve memory space as
if all DT levels would be completely filled, no matter if all the nodes really exist.

On the other side, the compact in-memory representation (see Fig. 5(c))
assumes that only the nodes that actually exist are put into the one-dimensional
array. Thus, the array indexes of the parent node and descendants for each node
have to be explicitly saved (next to the node data, like tests or classes). Obvi-
ously, this increases the memory requirements per node, but globally it may be
compensated by keeping only actually existing nodes. The number of nodes in
the complete representation grows fast, exponentially with the tree level. For a
binary tree, in each successive tree level, it equals: 2ˆ(tree level − 1), while the
total number of nodes is: 2ˆ(number of tree levels) − 1. If we considered more
than two children/branches then the growth would be even more prominent.

For DTs, the Structure-of-Arrays (SoA) data layout is used. In SoA
[16], multi-value data are stored in separated arrays and the arrays are
grouped in a structure. In our case, it is struct DT{float thresholds[];int
attributes[]; int leftChildNodesIdx[];
int rightChildNodesIdx[];int parentNodesIdx[];}. The SoA layout is
usually preferred from a GPU performance perspective because one thread may
copy data to cache for other threads (coalesced memory access).

3.2 GPU Kernels Implementation

GPU computations are organized into two kernel functions: fitnesspre and fit-
nesspost (see Fig. 4). The first kernel calculates the number of objects of each
class located in each tree leaf. In addition, two randomly selected objects of each
class are provided in each tree leaf. They may be later used to construct dipoles
and finally effective tests. However, the results are scattered over separated copies
of the individual created for each GPU block.

The fitnesspost function reduces the partial results collected by each GPU
block. When the information about the class distribution is reduced, prediction
errors in all leaves are found. Then, the class distribution, estimated errors and
selected objects for dipoles are propagated from the leaves towards the tree root.
Finally, all the results, in all tree nodes, are sent to the host.

The use of compact representation forced us to modify the way of travers-
ing through DTs, among others. Considering the kernel fitnesspre, when objects
are propagated from the tree root towards the leaves, children nodes are found
based on stored indexes in the arrays int leftChildNodesIdx[] and int
rightChildNodesIdx[]. For the fitnesspost kernel, when the results are propa-
gated from the leaves towards the tree root, parent nodes are found based on
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Table 1. Characteristics of the real-life and artificial datasets.

Dataset No. samples No. attributes No. classes

Chess10K 10 000 2 2

Chess100K 100 000 2 2

Chess1M 1 000 000 2 2

Chess10M 10 000 000 2 2

SDD 2C ∗ 10 639 49 2

SDD 4C ∗ 21 277 49 4

SDD 6C ∗ 31 915 49 6

SDD 8C ∗ 42 553 49 8

SDD 10C ∗ 53 191 49 10

SDD 58 509 49 11
∗ Note: A subset of the SDD dataset containing objects of first
2, 4, 6, 8 and 10 classes.

the indexes in the array int parentNodesIdx[]. The reduction is similar but
is performed on less (compact) array elements.

4 Experimental Validation

Validation was performed on both real-life and artificial datasets. The details
of each one are presented in Table 1. The artificial dataset, called Chess, repre-
sents a classification problem with two classes, two real-values attributes and
objects arranged on a 3 × 3 chessboard [10]. We used the synthetic dataset
to scale it freely (from 10 000 to 10 000 000 objects). Concerning the real-life
dataset, Sensorless Drive Diagnosis (SDD) from UCI Machine Learning Reposi-
tory [4] was used. It contains 48 features extracted from the motor current signal
and 11 different class labels. To check the solution behavior when the number
of classes increases, we extracted from the SDD dataset five subsets, containing
successively objects of the first 2, 4, 6, 8 and 10 classes. We called them SDD 2C,
SDD 4C, SDD 6C, SDD 8C and SDD 10C.

Experiments were performed using two NVIDIA GPU cards installed on:

• server with two 8-core processors Intel Xeon E5-2620 v4 (20 MB Cache,
2.10 GHz), 256 GB RAM, NVIDIA Tesla P100 GPU card (3 584 CUDA cores
and 12 GB of memory);

• server with two 24-Core processors AMD EPYC 7402 (128 MB Cache,
2.80 GHz), 1 TB RAM, NVIDIA Tesla A100 GPU card (13 824 CUDA cores
and 40 GB of memory).

Servers run 64-bit Ubuntu Linux 18.04.6 LTS. The original GDT system was
implemented in C++ and compiled with the use of gcc version 7.5.0. The GPU-
based parallelization was implemented in CUDA-C [15] and compiled by nvcc
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Table 2. Mean execution times of sequential, OpenMP and GPU-supported implemen-
tations (in seconds). Concerning GPU-supported ones, time for complete and compact
in-memory representations of DTs is shown.

GPU

Dataset Sequential OpenMP P100 A100

Complete Compact Complete Compact

Chess10K 61 14.5 19.2 8.1 14.3 7.3

Chess100K 692 145.3 21.5 10.7 15.2 8.2

Chess1M 23 536 3 605.7 55.9 51.2 25.3 23.8

Chess10M 324 000 47 600.4 641.1 621.7 143.9 142.5

SDD 2C 38 10.7 10.1 8.53 8.9 8.1

SDD 4C 87 27.2 24.7 10.35 12.5 9.5

SDD 6C 411 128.8 119.9 19.74 51.7 12.1

SDD 8C 945 286.4 195.2 33.91 75.8 14.9

SDD 10C 1 984 548.4 420.4 57.64 301.1 27.2

SDD 2 858 766.8 561.2 75.76 447.5 36.1

CUDA 11.6 [13] (single-precision arithmetic was applied). All presented results
correspond to averages of 5-10 runs and were obtained with a default set of
parameters from the original GDT system [6,10]. As we are focused in this
paper only on time and memory resources, results for the classification accuracy
are not included (they can be found in [6,10]).

4.1 Results

Table 2 presents the preliminary results for all tested datasets. The mean execu-
tion times of cuGDT (using two different GPUs) as well as OpenMP-accelerated
and sequential GDT versions (using the Intel CPU server) are shown. It is clearly
visible that the use of compact representation gives an additional reduction in
the evolution time. Concerning Chess dataset, the acceleration is more relevant
for smaller datasets. When the number of objects grows, the difference between
compact and complete representations becomes less important. The reason can
be found when the run-time breakdown is analyzed (see Fig. 6(a,b)). We see that
for 10M of objects, the fitnesspre kernel dominates (more than 97% of time in
both cases). The applied DT in-memory representation has no significant impact
on the workload in this kernel. On the other side, for 10K of objects, the fit-
nesspost kernel is the most important, and here the representation makes a real
difference. The reduction and propagation of results (towards the root node)
are done through all elements of the one-dimensional array (representing DT)
without any control decision. Thus, in the complete representation, many more
operations have to be done.

As regards the SDD dataset, the compact representation also reduces the
evolution time. However, the improvement grows when the number of classes
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(a) Chess, complete (b) Chess, compact

(c) SDD, complete (d) SDD, compact

Fig. 6. The run-time breakdown of the GPU-accelerated algorithm using complete and
compact in-memory representations of decision trees for NVIDIA Tesla P100 GPU
card. The average time (as a percentage of total run-time) of the most relevant parts
is shown, both communication between host and device (HtoD, DtoH) and GPU/CPU
computations are included.

(and objects) increases. Similarly, the run-time breakdown in Fig. 6(c,d) can be
used to explain the solution behavior. The kernel fitnesspost dominates and the
compact representation is more efficient in it (as the reduction is performed on
a smaller (compact) array). Another reason can be deduced from the results in
Table 3 where the transfer size between the host and device is presented. We
see that when the number of classes increases also the size of transfer grows. At
the same time, the difference in the size of sent data becomes more important,
particularly, for the transfer from the device to the host (transfer of the results).
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Table 3. Transfer size in MB for Tesla P100 GPU card. Decision trees sent from host
to device (HtoD) as well as results sent from device to host (DtoH) are included.

Dataset
Complete Compact

HtoD DtoH HtoD DtoH

Chess10K 18.05 72.19 15.36 24.49

Chess100K 17.71 70.85 14.83 23.62

Chess1M 17.17 68.68 15.64 24.99

Chess10M 20.07 80.29 14.39 22.99

SDD 2C 7.01 28.05 8.02 12.83

SDD 4C 16.57 115.61 11.81 33.05

SDD 6C 59.99 597.21 19.24 76.95

SDD 8C 71.71 929.37 27.46 142.77

SDD 10C 84.91 1 358.57 34.36 219.88

SDD 134.02 2 338.61 41.16 288.12

If there are more classes, there is a need to send back to the host results contain-
ing more data (in each DT node, for each class, the number of located training
objects as well as two objects for constructing dipoles). Considering the transfer
from the host to the device, the increase can be explained by bigger DTs when
the problem is more difficult. For the Chess dataset, the transfer size is similar
through the various number of objects as it does not influence the problem and
DTs of similar size are transferred. Obviously, there are differences in transfer
size between compact and complete representations but there are smaller than in
the case of the SDD dataset as objects in Chess are only labeled by two classes.

NVIDIA Tesla A100 GPU card provides better results than P100 GPU one
as it is more powerful, both from computational and memory (bandwidth) per-
spectives. If compared to the sequential GDT or even to its OpenMP-supported
version [10], the GPU-boosted GDT is at least one order faster in most cases.
cuGDT with the compact representation is always at least a little faster than
using the complete one. Moreover, in some cases (8 and more classes), we had
to limit the maximum size of DTs able to be processed by a GPU when the
complete representation was used. It was the case when very deep DTs with
sparsely filled nodes were verified. The memory size needed to store the struc-
ture of DTs was quite small, but the results (sent to the host) required too much
GPU memory.

5 Conclusion

In this paper, we introduce a compact in-memory representation of DTs into
the GPU-supported evolutionary induction. This representation stores explic-
itly links between parent and children nodes. It required allocating additional
memory space for each tree node to save these links. However, in comparison to
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the (previously used) complete representation, the compact one allowed us to
globally decrease both the memory and time resources. It is only a preliminary
investigation, and we are conscious that more research is needed, e.g. processing
other datasets with different characteristics, checking kernel call settings and
deeper profiling. Moreover, our plans include more research on other memory
layouts and representations both for training data and DTs.
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