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Abstract. In the work, a (semi)automatic multi-image texture analysis
is applied to the characterization of prostatic tissues from Magnetic Res-
onance Images (MRI). The method consists in a simultaneous analysis
of several images, each acquired under different conditions, but repre-
senting the same part of the organ. First, the texture of each image is
characterized independently of the others, using the same techniques.
Afterwards, the feature values corresponding to the different acquisi-
tion conditions are combined in one vector, characterizing a multi-image
texture. Thus, in the tissue classification process different tissue prop-
erties are considered simultaneously. We analyzed three MRI sequences:
contrast-enhanced T1-, T2-, and diffusion-weighted one. Two classes of
tissue were recognized: cancerous and healthy. Experiments with several
sets of textural features and four classification methods showed that the
application of multi-image texture analysis could improve the classifica-
tion accuracy in comparison to single-image texture analysis.

Keywords: computer-aided diagnosis, tissue characterization, feature
extraction, multi-image texture, classification.

1 Introduction

According to Global Cancer Statistics [1], prostate cancer is the second most fre-
quently diagnosed cancer worldwide, and the sixth most frequent cause of cancer
death in males. In 2008 it represented 14% of the total new cancer incidences
(903, 500 reported cases) and 6% of the total cancer deaths (258, 400 cases) in
males. In this context, the search for the methods allowing to detect a prostate
pathology as early as possible and to determine its type (benign or malign) is
crucial for reducing prostate cancer-caused mortality rates.

Admittedly, there exist some diagnostic tools for prostate cancers: the PSA
(prostate-specific antigen) serum screening, the needle biopsies, or an ensemble
of the MRI techniques enabling to visualize different prostatic tissue properties.
However, the first two tools have many deficiencies and their use still remains
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under discussion. For example, a 10-year experiment on 76, 693 men conducted
by Andriole et al. [2] revealed that there were no significant benefits of screening
for prostate cancer with PSA serum testing. According to another report, in some
cases prostate cancer screening could lead to over-treatment [3]. Furthermore,
the use of needle biopsy, which is the current standard when discovering high
PSA values, carries a risk of serious complications. Also, a needle may miss an
important tumor case, when it does not hit the right place.

Considering the above facts, a large hope can be placed in a correct interpre-
tation of MR prostate images, especially that their acquisition is not too invasive
or harmful to health. However, the correct recognition of image content may go
beyond the capacity of a non-equipped physician. It is important, therefore, to
develop appropriate tools for computer-aided diagnosis (CAD).

The aim of present study is to validate methods for the texture-based anal-
ysis of MR prostate images and to examine their usefulness in prostatic tissue
classification. In this process, we analyze simultaneously textures corresponding
to different MR image sequences (contrast-enhanced T1-, T2-, and diffusion-
weighted) and referring to the same prostate slice. According to our knowledge,
no one has yet proposed a CAD system designed for prostate tumor recognition
based on multi-image texture analysis from MR images. However, there exist few
works on multi-image texture analysis concerning other organs and other imag-
ing modalities. They have already shown that such an approach is promising in
the process of tissue characterization and recognition.

The next section includes a short overview of existing CAD systems, incor-
porating methods for a simultaneous analysis of several images acquired under
different conditions and representing the same part of an organ. In Sect. 3 our
system for the classification of multi-image textures is presented. Experimen-
tal validation of the proposed methods is described in Sect. 4. Conclusions and
future works follow in the last section.

2 Related Work

The earliest studies on the usefulness of multi-image texture analysis were pre-
sented in [4] and [5]. In both works, triples of CT liver images were analyzed
simultaneously, in order to recognize the normal liver and its two primary ma-
lignant tumors: hepatocellular carcinoma (HCC) and cholangiocarcinoma. The
images in a triple corresponded to the same liver slice. Each of them was acquired
with different concentration of the contrast product injected to the patient. The
first image was taken without the contrast, the next two ones – after its injection
in the arterial and portal phase of its propagation in hepatic vessels. The multi-
image texture was characterized by sets of features corresponding to each ac-
quisition moment and placed all together in one vector. Experiments conducted
separately for each of the three acquisition moments, and for the multi-image
case proved the considerable potential of multi-image texture analysis.
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The latter work, concerning the classification of liver pathologies from CT
images, also showed the high usefulness of the multi-image approach for tissue
characterization. In [6] four moments of contrast product propagation were con-
sidered: a pre-injection phase, and three after-injection phases: arterial, portal,
and late. The CT images were analyzed in quadruples. Five types of liver lesions
(cysts, adenomas, hemangiomas, HCC and metastasis) were recognized. Also
here, a set of four textures was characterized by one vector composed of features
calculated separately for each of the four acquisition moments.

Nagarajan et al. [7] used a multi-image texture analysis for breast lesion clas-
sification from dynamic contrast-enhanced (DCE) MR images. In order to differ-
entiate two types of small lesions (benign and malign) five post-contrast images
were analyzed simultaneously. A multi-image texture was characterized by five
values of the same textural feature, each corresponding to a different moment
of contrast product propagation. The study showed that the characterization of
the lesion enhancement pattern could improve the classification accuracy of the
considered, diagnostically challenging, breast lesions.

Quite different approach to multi-image texture analysis was presented in
[8]. This study introduces the notion of "textural kinetics" that characterizes
texture evolution under contrast product propagation in DCE-MRI. At first,
textural features are calculated at each moment of contrast product propaga-
tion, and the "textural kinetics curve" is created basing on the set of feature
values. Afterwards, a third order polynomial is fitted to such curve in order to
characterize its shape. Four polynomial coefficients constitute the feature vector.
Such a method was applied to the recognition of benign and malignant breast
lesions and proved to be superior to lesion intensity profile dynamics.

Finally, Bhooshan et al. [9] combined textural features from both DCE T1-
and T2-weighted MR images in order to recognize benign and malignant breast
lesions. For the T1-weighted sequences, only the first post-contrast image was
used for texture analysis. In this case, contrast product propagation was charac-
terized by typical kinetic parameters obtained from signal-to-time curves. The
experiments showed, that the combination of texture characteristics, obtained
from both T1-, and T2-weighted images may outperform the conventional anal-
ysis of T1-weighted contrast-enhanced sequences.

To the best of our knowledge, there is no such a CAD system that combines
texture characteristics corresponding to different MRI sequences (like T1-, T2-,
or diffusion-weighted) in order to characterize prostatic tissue in classification
process. There exist a few systems that use information about the propagation
of contrast product based on T1-weighted DCE-MR sequences (e.g. [10]). Nev-
ertheless, they use only pharmacokinetic models, employing the signal-to-time
curves in order to find perfusion parameters. The aim of our work is, therefore,
to assess the utility of multi-image texture analysis in the characterization of
prostatic tissue from MRI. The images belonging to different MRI sequences
will be analyzed simultaneously.
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Fig. 1. A system for tissue classification based on multi-image texture analysis; the
first stage of work: the construction of classifiers from a database of image n-tuples

Fig. 2. A system for tissue classification based on multi-image texture analysis; the
second stage of work: the application of classifiers to aid diagnosis

3 Methods

Two stages of work of a typical, image-based CAD system can be distinguished
[11]. The first one, called training (or learning), consists in the preparation of
the system for the recognition of several predefined tissue classes. In practice,
this means constructing classifiers from a database of images which represent
only diagnosed cases. The second stage is the application of the system in order
to aid diagnosis.

The system which we are working on also follows the above-described, two-
stage scheme. What distinguishes our system among others, is that the n images
representing the same tissue slice but acquired under different acquisition condi-
tions (e.g. different scanner settings) are combined in the n-tuples and analyzed
simultaneously. The first stage of work of our system is presented in Fig. 1.

After the creation of a database, the n-tuples of images are formed. Depending
on the number of considered image sequences, an n-tuple can comprise two, or
more images. The order of images in each n-tuple is fixed. For example, a triple of
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MRI prostate images might contain the T1-, the T2-, and the diffusion-weighted
image on the first, the second, and the third position respectively.

An optional step here can be image pre-processing. It is used to improve the
contrast, to eliminate the noise or the artifacts, or to equalize ranges of pixel
values corresponding to different studies (which is the case in our database).

The next step is to outline the Regions of Interest (ROIs). A ROI covering the
same part of the organ is outlined on each of the images forming an n-tuple. An
n-tuple of thus obtained ROIs is analyzed simultaneously in order to characterize
the tissue. First, the same set of textural features is calculated for each ROI in
an n-tuple. Next, the features corresponding to different images in the n-tuple
are combined in one "complex" vector characterizing a multi-image texture. In
the simplest case, such a vector is formed by concatenating the sets of features
corresponding to each considered sequence. Its parameters can also be a function
of several feature values obtained with the same method and corresponding to
different sequences. At this point, the doctor-specialist specifies the tissue class
(label) which is attributed to each complex vector of features. The label reflects a
pathology affecting the organ under consideration and is determined on the basis
of a verified diagnosis. Labeled feature vectors form the so-called training (or
learning) set. On the basis of such a set one or more classifiers are constructed.

Another optional step can be feature selection that takes place either before or
during the construction of classifiers. It allows finding the most relevant features
and rejecting redundant or inefficient ones. It also results in the reduction of
memory and computation time required for the following processing steps.

Once the classifiers are constructed, the second stage of system work can take
place: the system can be applied to identify new, yet undiagnosed cases. The key
details of this process are depicted in Fig. 2.

At this stage, an n-tuple of images representing the same part of the organ is
necessary. The order of the sequences from which subsequent images derive is the
same as it was in the first stage of system work. Also the image pre-processing
and the texture feature extraction techniques remain the same. After outlining
the ROI on each of the images composing an n-tuple, the extraction of textural
features for each ROI takes place. Next, a complex vector characterizing a n-
tuple of textures is created. If feature selection was applied in the first stage,
only the selected features are used here. Finally, the classifiers available in the
system are applied and the most probable tissue class is indicated.

4 Experiments

The aim of the experiments was to assess the usefulness of the proposed method
in the characterization of prostatic tissues from MR images. Three image se-
quences (contrast-enhanced T1-, T2-, and diffusion-weighted) were considered
simultaneously in the classification of two tissue types: cancerous and healthy.
Complex feature vectors were created by concatenating the parameters corre-
sponding to the three sequences. For comparison, also pairs of image sequences
were tested, as well as the one-sequence cases.



144 D. Duda et al.

4.1 Database Description

The images were gathered in Pontchaillou University Hospital in Rennes, France,
between August 2009 and April 2010. They were derived from 19 patients.
One study per patient was available. The acquisitions were performed on a 3T
Siemens Verio magnetic resonance scanner. The images were recorded in DICOM
format. The T1-weighted sequences were taken after injection of a gadolinium-
based contrast agent, Dotarem R©, in an amount of 13 to 20 ml. 30 different
moments of contrast agent propagation were visualized. The time interval be-
tween consecutive moments was 7 seconds. The fat suppression (FS) method
was applied for the T1 sequences. Slice thickness was the same for all the im-
ages of the same sequence: 3 mm for the T1-, and T2-wighted sequences, 6 mm
for the diffusion-weighted ones. Image size in pixels was: 192× 192 for the T1-
weighted images, 320× 320 (for 16 patients) or 448× 448 (for 3 patients) for the
T2-weighted ones, and 160 times136 for diffusion-weighted. An example of the
three corresponding images of considered sequences is given in the Figure 3.

(a) T1-weighted (b) T2-weighted (c) diffusion-
weighted

Fig. 3. Three MR images of prostate acquired at the same slice position; the propor-
tions between images of each sequence were kept

In total, 180 ROIs were outlined for prostatic tissue, 60 for each of the three
considered image sequences. Due to the fact that image sizes differed between
sequences, the average sizes of ROIs corresponding to different sequences were
also different. They amounted to 91, 456, and 85 pixels respectively.

For most studies, ROIs were outlined only within one of the two available
classes (healthy or tumorous), which resulted in a certain inconvenience. It was
not possible to determine the moment of contrast agent propagation in which
the differences between texture characteristics corresponding to healthy and tu-
morous tissue were the most significant. For this reason, for our analyses, we
always chose the middle image (15th of the available 30) from the T1-weighted
sequences.
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4.2 Image Conversion

An important drawback of our database was that the full range of pixel values
possible to occur in the images (image resolution in pixel values) could not be de-
termined from the DICOM headers. It is known that pixel values describing each
organ fall into a certain part of the full range. Basing on pixel value histograms,
obtained for the ROIs within the prostate, for the entire hips (not affected by
tumor), and for the entire images, we hypothesized that image resolutions in
pixel values might be different for each of the considered studies.

Therefore, in order to equalize the ranges of pixel values corresponding to
different studies (separately for each sequence), the preliminary step of image
processing was image conversion. Due to the fact that the ROIs outlined for the
prostate were very small, and, for most studies, corresponded to only one tissue
class, it would have been difficult to convert images basing only on the pixel
values describing the prostate. Such a conversion was thus conducted in order
to obtain the same range of pixel values (the smallest possible) corresponding to
ROIs covering the hips.

In total, 1601 ROIs covering the hips were considered among which 678, 522,
and 401 ROIs corresponded to T1-, T2-, and diffusion-weighted sequences re-
spectively. Average ROI areas were about 547, 2404, and 412 pixels respectively.
For each study and for each sequence, the range of pixel values was found sepa-
rately. Each time, 5% of the brightest and the darkest pixels were not taken into
account.

For the diffusion-weighted images the ranges of pixel values did not differed
considerably. The widest of them were not even twice wider than the narrowest
ones. The largest differences in ranges of pixel values were observed for T2 se-
quences. The widest range was more than nine times wider than the narrowest
one. For T1 sequences it was above four times wider. The range centers obtained
for different studies and the same series were located in different places.

Finally, the pixel values of the images of the T1-, and T2-weighted sequences
were subjected to a linear transformation with integer coefficients. After the con-
version, the range of gray levels sufficient to characterize all the pixels belonging
to the prostate ROIs did not exceed 256, for each of the considered sequences.
This allowed the images to be processed as if they were in a 8-bit BMP format.

4.3 Feature Extraction

The 30 texture features were calculated separately for each image in a triple.
Six different approaches to texture analysis were used. They based on: autocor-
relation (AC) [12], first order statistics (FO), gradients (GB), fractals (FB) [13],
co-occurrence matrices (COM) [14], and run length matrices (RLM) [15, 16].
The names of features are given in Table 1.

For the COM and RLM methods, the number of gray levels was reduced to 64
and 32 respectively. The co-occurrence matrices were constructed separately for 4
standard directions (0◦, 45◦, 90◦, and 135◦), and for 2 different distances between
the pixel pairs, 1 and 2. The run length matrices considered the 4 aforementioned
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Table 1. Calculated textural features; the name of a feature set is created by adding
the number of features (as a subscript index) to the name of the extraction method

Set Feature Names

AC2 (d)Autocorr, where d = 1, 2 is a pixel distance
FO4 Avg, Var, Skew, Kurt
GB4 GradAvg, GradVar, GradSkew, GradKurt
FB1 FractalDim

COM11 AngSecMom, InvDiffMom, Entropy, Correlation, SumAvg, DiffAvg, Sum-
Var, DiffVar, SumEntropy, DiffEntropy, Contrast

RLM8 ShortEmp, LongEmp, GLNonUni, RLNonUni, Fraction, LowGLREmp,
HighGLREmp, RLEntropy

directions of pixel runs. Features obtained for different pixel distances and/or
for different directions were averaged.

The normalized autocorrelation coefficients (AC method) were also calculated
separately for 4 standard directions, and for 2 different pixel distances: 1, and
2. Only features corresponding to different directions were averaged.

The FB method was based on the fractional Brownian motion model [17] and
also considered only 2 pixel distances, 1 and 2.

In total, 11 different feature sets were tested. Six of them contained features
derived from one extraction method only. Another three sets combined features
derived from several methods: All23 (COM, RLM, and FO), All25 (COM, RLM,
FO, and AC), and All30 (all available features). Moreover, two sets of selected
features were considered: SelF , and SelB. They contained features selected from
the 30·3 possible ones (30 features corresponding to the 3 image sequences), using
two searching directions, respectively Forward, and Backward. The selection of
features was performed with the Weka software [18]. The following selection
settings were applied: the wrapper method (called WrapperSubsetEval in Weka)
– as an evaluator of each tested subset of features, the C4.5 tree [19] (J48 ) – as
a classifier, and the BestFirst searching strategy.

4.4 Classification Results

Several classifiers were used in order to assess the potential of the multi-image
texture analysis, and to compare it to that of one-sequence texture analysis.
Among them were: logistic regression – LR (algorithm called Logistic in Weka),
neural network – NN (MultilayerPerceptron), and support vector machines –
SVM (algorithm SMO). The NN used a backpropagation algorithm and a sig-
moid activation function. It had one hidden layer, wherein the number of neu-
rons was equal to the average value of the number of features and the number
of classes. The SVM used two kernels: the Gaussian kernel (RBFKernel), GK,
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and the polynomial (PolyKernel) one, PK. The classification accuracies were
estimated by 10-fold cross-validation, repeated 10 times.

The Table 2 presents selected results obtained for the classification of simple
textures (when each sequence was considered separately) and multi-image tex-
tures (when three or two sequences were analyzed simultaneously). Each line of
the table contains results obtained by the same classifier, for the same set of fea-
tures, but for different image sequences (T1, T2 or diffusion) or image sequence
combinations (T1 and T2, T1 and diffusion, T2 and diffusion, T1 and T2 and
diffusion). We will always compare the results located in the same row of the
Table 2 – obtained with the same classifier, and for the same set of features.

As for the cases of simple texture analysis, we can conclude that the most
useful piece of information for the process of prostatic tissue classification was
extracted from the T2- and the diffusion-weighted images. The advantage of the
T2-weighted images was certainly that they were the biggest in size. Their draw-
back was the necessity of pre-conversion, as, initially, they showed the largest
differences in the ranges of pixel values. Finally, taking into account the re-
sults obtained with T2-weighted images, we could estimate that the applied
image conversion probably did not affect the classification results (too) nega-
tively. Therefore, pre-conversion could be a good solution when no information
about the full range of image pixel values is available in DICOM headers. In
turn, inferior results obtained for a T1-weighted sequence may indicate the need
to develop a method for choosing the most appropriate moment (in terms of
tissue characterization) of contrast agent propagation.

The best classification results for the simple texture problem were: 94.83%,
95.67%, 93.00%, and 96.17% of correctly classified cases for the LR (with the
SelF feature set), the NN (with COM11), the SVM-GK (with SelF ), and the
SVM-PK (with All25) classifiers respectively. Such results were obtained when
the diffusion-weighted sequences (the case of the first three classifiers) or the
T1-weighted sequences (the case of the last two classifiers) were considered.

Comparing classification results obtained for simple and multi-image textures,
we can notice that there always exists at least one combination of two sequences
that leads to better tissue recognition in comparison with the best possible one
achieved for a single-sequence case. This is observed for each classifier, and for
each feature set. The simultaneous analysis of images in triples almost always
guaranties better results than the analysis of pairs of images. Finally, it is with
the analysis of the three-image textures that the best overall classification result
was achieved: 99.19%, for the combination of the SVM-PK classifier and the
All23 feature set. With other classifiers the results slightly differed from the best
possible one: 98.00%, 97.83%, and 98.00% obtained for the LR (with COM11),
NN (with RLM8), and SVM-GK (with RLM8 feature set) classifiers respectively.

The highest differences between the best results for the multi-image and the
single-image case were observed with RLM8 feature set: 7.00%, 6.33%, 6.50%,
and 4.84% for the LR, the NN, the SVM-GK, and the SVM-PK classifiers
respectively.
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5 Conclusions and Future Work

In the work, a multi-image texture analysis was applied, for the first time, to the
characterization of prostatic tissues from MR images. Images representing the
same prostate slice but corresponding to different acquisition conditions (giving
the T1-, T2-, and diffusion-weighted sequences) were analyzed simultaneously.
Two classes of prostatic tissue were recognized: cancerous and healthy.

Experiments have shown that a simultaneous analysis of two, or three images
can improve the recognition of prostatic tissues, in comparison with single-image
analysis. The best results obtained for multi-image (two-, or three-image) cases
were better than the best corresponding ones achieved for simple-image cases.
The best improvement of classification quality reached 7.00%. The analysis of
three-image textures proved to ensure the best classification result.

We admit that the preliminary experimental results, although promising,
could also be subject to error. This could have been avoided if a key piece
of information had been available in the database to process, namely the full
ranges of image pixel values, apparently different for different studies. In this
case, image conversion based on the analysis of the intervals of pixel values cor-
responding to another organ (in our case the hips) seemed to be the only solution.
Nevertheless, the texture of the hips can also be altered by the presence of var-
ious pathological processes, different for each patient. To avoid this problem in
the future, either image acquisition protocols should be standardized or images
should contain information about the full ranges of pixel values. Furthermore,
when acquiring images, a good idea would be to place a "reference object" in
view. The texture analysis of such an object could be crucial for the purposes of
image conversion aimed at the equalization of pixel value ranges corresponding
to different studies.

Finally, it would be desirable to have two types of ROIs (corresponding to
cancerous and healthy tissue) delineated for each study or patient. Such an in-
formation would allow to analyze changes in texture characteristics under con-
trast product propagation (in T1-weighted sequences) corresponding to the both
types of tissue. Basing on such an analysis one could determine which moment
of contrast product propagation is related to the most significant differences in
texture characteristics obtained for cancerous and healthy tissue.

In the future, we will try to resolve all of the aforementioned problems. It
would be worthwhile to repeat the experiments using a much larger database
and to recognize more than two tissue classes. Other MRI sequences, such as
FLAIR (fluid-attenuated inversion recovery) or proton density-weighted, can also
be considered for multi-image texture analysis. It also seems to be interesting
to find a method for characterizing texture evolution under contrast product
propagation based on the simultaneous analysis of many contrast-enhanced T1-
weighted images related to different concentrations of the contrast product in
prostatic vessels.
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