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Abstract: Relative Expression Analysis (RXA) plays an important role in 
biomarker discovery and microarray data classification. It focuses on ordering 
relationships between the expression of small sets of genes rather than their 
raw values. Most of the RXA algorithms are preceded by feature selection as 
analysing all possible subsets of genes is computationally infeasible. In this 
paper, we propose an efficient solution that unifies major variants of RXA 
algorithms and is capable of searching top inter-gene relations even in large 
microarray datasets. A specialised evolutionary algorithm that incorporates and 
exploits knowledge about RXA into the evolutionary search allows exploring 
solution space with all available genes. By embedding information about the 
genes’ discriminative power we managed to speed up the evolutionary process 
and to search for complex interactions between genes. Experimental validation 
shows that the proposed solution outperforms popular RXA algorithms and has 
considerable potential for discovering new relationships between the genes. 
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1 Introduction 

With the rapid growth and the popularity of microarray technology a large amount of 
gene expression datasets became publicly accessible (Taminau et al., 2012). Availability 
of this information opens new challenges for existing algorithms that search for the 
relations between the genes. Finding accurate and simple rules or biomarker genes in 
whole gene expression dataset is still a real challenge and requires new efficient  
and robust classification algorithms. In the literature, we may find a good number of 
supervised machine learning algorithms. Among the most popular ones, we could 
mention the support vector machines (SVMs), neural networks, K-nearest neighbours or 
decision trees. Most of methods provide ‘black box’ decision rules that usually involve 
many genes combined in a highly complex fashion and achieve high predictive 
performance. However, it can be observed that there is a strong need for ‘white box’, 
comprehensive classification models which may actually help in understanding and 
identifying casual relationships between specific genes (Barros et al., 2014; Czajkowski 
et al., 2014). 

A Relative Expression Analysis (RXA) focuses on finding interactions among small 
group of genes and studies the relative ordering of their expression values. In the pioneer 
research (Geman et al., 2004), authors used ranks of genes instead of their raw expression 
values and introduced the Top Scoring Pair (TSP) concept. The classification algorithms 
based on that idea appeared robust to small perturbations of gene expression values and 
insensitive to data normalisation and standardisation procedures. They managed to 
identify many interesting gene-gene interaction and played important role in a biomarker 
discovery (Lin et al., 2009). The influence of RXA solutions could be even greater, 
however, the computational complexity of the algorithms strongly limits the number of 
genes that can be analysed. 

To face this problem, we propose a new algorithm called TIGER, which stands for 
Top Inter-GEne Relations. In contrast to other RXA algorithms, TIGER can efficiently 
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search for gene-gene interactions in full microarray datasets. Our specialised 
evolutionary algorithm (EA) not only combines and unifies major variants of TSP 
extensions but is capable of finding even larger and more complex inter-gene relations. 
The TIGER solution reviews and significantly extends other works that searched for top 
scoring gene pairs, especially the EvoTSP (Czajkowski and Kretowski, 2014) algorithm. 
We propose specialised variants of the genetic operators and modify the fitness function 
to improve the evolutionary process. To boost the TIGER’s speed, we have designed a 
novel ranking of genes that is based on their discriminative power. The ranking is used to 
calculate the probability of selecting genes into the classifiers model. This solution 
allows to consider the relations based on top genes more often during the evolutionary 
process. Experimental validation illustrates the advantage of the proposed approach in 
comparison to predecessors. 

The rest of the paper is organised as follows. The next section provides a brief 
background on the RXA algorithms. Section 3 describes our approach and Section 4 
presents the experimental validation of TIGER and competitive algorithms on 8 real 
microarray datasets. In the last section, the paper is concluded and possible future works 
are sketched. 

2 Algorithms for relative expression analysis 

Gene expression data is very challenging for computational tools and mathematical 
modelling. Traditional solutions often fail due to the high ratio of features/observations 
as well as enormous genes redundancy. Therefore, the new computational tools are 
proposed to extract significant and meaningful rules from microarray data, and among 
them RXA algorithms are gaining popularity. Figure 1 illustrates the relative expression 
algorithms taxonomy that includes main development paths that will be now briefly 
described. The bolded frame indicates the location of our approach. 

Figure 1 The general taxonomy of the family of top scoring pair algorithms with a bolded 
location of the TIGER algorithm 

 

2.1 Algorithms 

The first and the most popular RXA solution is the Top-Scoring Pair (TSP) proposed by 
Donald Geman (Geman et al., 2004). The algorithm bases on pairwise comparison of 
gene expression values and searches for a single pair of genes with the highest rank. The 
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general schema of the algorithm is illustrated in Figure 2. Let us assume that ix  and jx  

are the expression values of two different genes from available set of genes and there  
are only two classes: normal  and disease . At first, we calculate the probability of  
the relation <i jx x  between those two genes in the objects from the same class: 

( ) = ( < | = )ij i jP normal Prob x x Y normal  and ( ) = ( < | = )ij i jP disease Prob x x Y disease , 

where Y  denotes the class of the objects. Next, the score for this pair of genes ( , )i jx x  is 

calculated: =| ( ) ( ) | .ij ij ijP normal P disease   This procedure is repeated for all distinct 

pairs of genes and the gene with the highest score becomes titled top scoring pair. In case 
of a draw, a secondary ranking that bases on genes expression differences in each class 
and object is used (Tan and Naiman, 2005). Finally, for the new test sample the relation 
between expression values of the top pair of genes is checked. If the relation holds, then 
the TSP predictor votes for the class that has the higher probability ijP  in the training set, 

otherwise it votes for the class with smaller probability. 

Figure 2 The general schema of the top scoring pair algorithm 

 

One of the first extensions of the TSP solution focused on increasing the number of pairs 
in the prediction model. The k-TSP algorithm (Tan and Naiman, 2005) applies no more 
than k  top scoring disjoint gene pairs with the highest score, where the parameter k is 
determined by the internal cross-validation. This method was later combined with a top-
down induced decision tree in an algorithm called TSPDT (Czajkowski and Kretowski, 
2011). In this hybrid solution each non-terminal node of the tree divides instances 
according to a splitting rule that is based on TSP or k-TSP algorithm. 

Alternative approach for the TSP extension searches for relationships between more 
than two genes. Top Scoring Triplet (TST) (Lin et al., 2009) and Top Scoring N (TSN) 
(Magis and Price, 2012) algorithms analyse various ordering relationships between the 
genes, however, the general concept of TSP is retained. There exist other extensions of 
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the TSP solution that focus on protein expression (Kau et al., 2012), work as a feature 
selection for more complex classifiers (Shi et al., 2011; Zhang et al., 2012) or integrate 
various volumes of microarray data (Lin et al., 2009). 

The latest TSP extensions perform evolutionary search for different relations between 
the genes. In the GTSPDT algorithm (Czajkowski and Kretowski, 2013) authors propose 
hierarchical evolutionary method that extends TSPDT by performing a global induction 
of decision tree. Preliminary results showed that this evolutionary search may be a good 
alternative to the traditional RXA algorithms. The idea of applying EA for the search of 
TSP was later continued in an algorithm called EvoTSP (Czajkowski and Kretowski, 
2014). The authors proposed specialised EA that combined different variants of the TSP 
solutions and allowed exploring larger solution space. 

2.2 RXA limitations 

One of the main drawback of RXA algorithms is high computational complexity that 
equals ( * )NO k Z , where k  is the number of top-scoring groups, Z  is the number of 

analysed genes and N  is the size of group of genes which ordering relationships is 
searched. This slow performance is caused by the consideration of all possible gene pairs 
or gene groups and thus it limits the size of the group of genes that can be analysed. The 
largest ordering relationship was tested on a group of 4 genes (N=4) but only when the 
total number of analysed genes was heavily reduced by the feature selection to a few 
hundreds (Magis and Price, 2012). Although, the parallelisation of the algorithm 
managed to speed up calculation time by two orders of magnitude (Magis et al., 2011),  
it is still computationally infeasible to calculate on a full microarray dataset. 

Second limitation of the RXA algorithms is the need of presenting the parameters k  
and N  for the algorithms. It is almost impossible to define, for a particular problem in 
advance, what is the type of relationships in a dataset and how many genes or gene-pairs 
should be involved. For the k-TSP algorithm the parameter k  is determined by the 
internal cross-validation which increases the calculation time and decreases the size of 
already small training set. It is also not clear which of the TSP solution should be 
applied: TSP, k-TSP, TSN or TSPDT and due to the computational complexity the 
potentially hybrid solutions like k-TSN or decision tree with TSN were never published. 

One of the ways to extend the search for more complex relations between the genes is 
application of some heuristic methods. The EvoTSP algorithm managed to limit 
aforementioned drawbacks of RXA algorithms through the evolutionary approach. 
Proposed specialised EA searches for the weight top scoring pairs and allows exploring 
larger solution space. Although, EvoTSP does not calculate all combinations of genes, it 
still requires high computation time especially when full microarray datasets are 
analysed. The EvoTSP algorithm treats all the genes with the same importance and does 
not consider their discriminative power. It causes slower convergence of the algorithm 
which, for most of the time, focuses on meaningless genes. Therefore, in our approach 
we propose to treat low and high rank genes differently and consider the latter ones more 
often in the evolutionary search. In addition, the EvoTSP model focuses on gene pairs 
whereas the TIGER algorithm searches for gene relations which are not limited to 2 
genes. 
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3 Evolutionary search for Top Inter-GEne Relations 

The evolutionary algorithms (EA) (Michalewicz, 1996) belong to a family of meta-
heuristic methods that are inspired by biological mechanisms of evolution and represent 
techniques for solving a wide variety of difficult optimisation problems. The typical EA 
operates on a population of individuals that represents possible solutions to the target 
problem. In each evolutionary iteration, individuals are modified with genetic operators 
such as mutation and crossover, and evaluated according to the fitness function. Next, 
individuals are reproduced to a new population of offspring whereas individuals with 
higher fitness are reproduced more often. The evolutionary loop is stopped when the 
convergence criteria are satisfied. 

In this section, we would like to propose the solution called Top Inter-GEne Relations 
(TIGER), which is an evolutionary approach for the RXA algorithms. The TIGER algorithm 
follows a framework for EA with an unstructured population and a generational selection 
(Michalewicz, 1996). The main steps of the solution are illustrated in Figure 3.  

Figure 3 The TIGER process diagram 

 

3.1 Ranking the genes 

The TIGER algorithm requires at its input the rank of all genes in the analysed dataset. 
The knowledge of discrimination power of each gene is latter used in initialisation of the 
population as well as in different variants of genetic operators. Ranking can be performed 
with any algorithm that assigns ranks to each gene by some importance criterion. In our 
research we applied the Relief-F (Robnik-Siikonja and Kononenko, 2003) algorithm 
which is commonly used to do variable selection of microarray data. The list of ranked 
genes that is passed to the TIGER solution can also be modified manually if there is a 
need for some gene or group of genes to be rejected. 

It should be noted that at this step no genes should be excluded from the dataset to let 
the TIGER solution work on all available genes. This way the algorithm is capable of 
finding interesting relations in low ranked genes which may constitute model with high 
discriminative power. This would be not possible, if the feature selection was applied as 
it has place in most of the studies. 

3.2 Representation and initialisation 

Associations between the genes may be represented by complicated structures in which 
the number of relations and the number of genes in each relation is not known in 
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advance. Therefore, in the TIGER system, relations between gens are not encoded in 
individuals and are represented in their actual form as a group of relations between the 
genes. Let us focus on an example that is illustrated in Figure 4. One can observe that the 
individual is composed of 3 different relations, where each one could appear in previous 
TSP extensions. However, the TIGER algorithm not only combines and unifies main 
TSP extensions, but also mitigates their limitations, like a restriction in k-TSP to use  
only disjoint gene pairs. With the evolutionary search of multiple relations between  
the genes each individual may have any type of relation from main RXA algorithms.  
The additional weight parameter denoted as ir  reflects the importance of the i-th relation. 

This way, when there are many relations in the model, the final decision is made by using 
the weight voting where each relation’s vote equals to its ir  parameter. 

Figure 4 An example representation of TIGER individual with 3 relations 

 

Traditionally, the initial population should be generated randomly to cover the entire 
range of possible solutions. In addition, the direct application of one of the TSP 
algorithms can trap the EA in a local optima. Therefore, while creating the initial 
population, we search for a good trade-off between a high degree of heterogeneity and a 
relatively low computation time. Each initial individual contains no more than 5 relations 
– each 2 genes long. Due to the large set of possible genes, we used exponential ranking 
selection (Blickle and Thiele, 1995) to the list of ranked genes that is passed to the 
TIGER algorithm. With this strategy, it is more likely to have relations between the 
genes that have high discriminative power. 

3.3 Genetic operators 

Two specialised genetic meta-operators corresponding to classical mutation and 
crossover have been proposed to maintain the genetic diversity. We have applied and 
extend basic variants from the EvoTSP solution and propose new ways to diversify 
relations in the individuals. The crossover variants include:   

 a random chosen relation is exchanged between two affected individuals; 

 genes within the relations are exchanged between the individuals; 

 random relations from the best individual founded so far are added to the affected 
individual; 

 random relations from the best individual founded replaces random relation in 
affected individual. 
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Set of mutation variants in the proposed solution covers:   

 add or remove a new relation in the affected individual; 

 change relation in the individual by replacing the gene or switching the relation sign 
between genes; 

 increase or decrease the weight of the relation; 

One of the TIGER’s innovative solutions is the use of gene rankings in different variants 
of mutation operator. Alike in the initial population procedure, exponential ranking 
selection determines which new genes (or relations) will appear in the model. This way 
top genes from the dataset are considered more often in the population, but the low-
ranked genes can still appear in the model. 

3.4 Fitness function, selection and terminal condition 

The fitness function is one of the most important and sensitive elements in the design of 
the EA. It measures how good a single individual is in terms of meeting the problem 
objective. As direct minimalisation of classification error usually leads to the over-fitting 
problem, the multi-objective optimisation may present more acceptable overall results 
(Cawley and Talbot, 2010). The TIGER solution adapts the idea proposed in the CART 
system (Breiman et al., 1984) and also used in the EvoTSP algorithm. However, in 
contrast to EvoTSP the complexity term focuses only on the number of unique genes that 
appear in classification model rather than the total number of top gene pairs. The fitness 
function has the following form:  

= * ,individualFitness Accuracy Complexity  

where Accuracy  is the reclassification quality calculated on the training set and 

Complexity  equals to the total number of unique genes that compose relations in the 

individual’s model. The alpha  parameter can be viewed as the relative importance of the 

complexity term. It can be specified by the user to steer the output model complexity and 
to tune the classifier to the currently analysed dataset. 

Ranking linear selection is applied as a selection mechanism. In Figure 3 we can see 
that in each iteration, the single individual with the highest value of fitness function in 
the current population is copied to the next one (elitist strategy). Evolution terminates 
when the fitness of the best individual in the population does not improve during the 
fixed number of generations (default: 1000). However, in case of a slow convergence, the 
maximum number of generations (default: 10000) is also specified to limit the 
computation time. 

4 Results and discussion 

We have performed experiments on several publicly available microarray datasets to 
verify the TIGER algorithm prediction power. In the experiments, the performance of the 
proposed solution with respect to the classification accuracy and size of the model is 
confronted with popular RXA algorithms. 
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4.1 Datasets and setup 

In order to make a proper comparison with the RXA algorithms, we have selected 
benchmark datasets that were used in testing the EvoTSP solution (Czajkowski and 
Kretowski, 2014). Eight publicly available microarray datasets related to human 
problems deposited in NCBI’s Gene Expression Omnibus (Edgar et al., 2002) and 
summarised in Table 1 were used. We have precisely followed the preprocessing and the 
experiments procedure to make the comparison to the results enclosed in the paper as 
accurate as possible. A typical tenfold cross-validation was used and the testing of 
different RXA algorithms was performed with the AUERA software (Earls et al., 2013), 
which is an open-source system for identification of relative expression molecular 
signatures. In all experiments a default set of parameters for all algorithms is used in all 
tested datasets and the presented results correspond to averages of 20 runs. 
Table 1 Details of tested gene expression datasets – the dataset names with abbreviation, 

number of genes and number of instances 

Datasets (DT) Abbreviation Genes Instances Description 

GDS2771 A 22215 192 Lung cancer 

GSE17920 B 54676 130 Hodgkin lymphoma 

GSE25837 C 18631 93 Chronic loneliness 

GSE3365 D 22284 127 Inflammatory Bowel disease 

GSE10072 E 22284 107 Lung adenocarcinoma 

GSE19804 F 54613 120 Lung cancer 

GSE27272 G 24526 183 Impact of tobacco smoke 

GSE6613 H 22284 105 Parkinson’s disease 

4.2 Comparison of TIGER to other RXA algorithms 

We have selected main RXA algorithms to compare with proposed TIGER solution: 
TSP, k-TSP, TSN and EvoTSP. The AUREA software sets the maximum number of top-
scoring pairs (parameter k) for k-TSP to 10 and N in TSN algorithm is set by default to 3. 
No feature selection was performed for EvoTSP and TIGER algorithms, however, for all 
other solutions the AUERA software needed a feature selection step, because of the 
computational complexity of the algorithms. 

4.3 Comparison of top-scoring family algorithms methods 

Table 2 summarises classification performance for the proposed solution EvoTSP and it’s 
competitors: TSP, TSN, k-TSP. The model size of TSP and TSN is not shown as it is 
fixed and equals correspondingly 2 and 3. 

The results enclosed in Table 2 show that the TIGER solution can successfully 
compete with popular RXA algorithms. The statistical analysis of the obtained results 
using the Friedman test and the corresponding Dunn’s multiple comparison test 
(significance level equals 0.05), as recommended by Demsar (2006) showed that the 
TIGER solution significantly outperforms all tested RXA algorithms. We have also 
performed additional comparison between the datasets with corrected paired t-test 
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(Nadeau and Bengio, 2003) with the significance level equals 0.05 and 9 degrees of 
freedom ( 1n   degrees of freedom where = 10n  folds). It showed that TIGER 
significantly outperforms TST, TSN and k-TSP algorithms on all datasets except the 
dataset D where there are no statistical differences between the classifiers accuracy. 
Number of genes that constitute the TIGER model is similar to the EvoTSP solutions and 
significantly smaller than in k-TSP. 
Table 2 Comparison of top-scoring algorithms, including accuracy with its standard deviation 

and the number of unique genes that build classifier’s model. The highest classifiers 
accuracy for each dataset was bolded 

DT TSP TSN k-TSP EvoTSP TIGER 

 Accuracy Accuracy Accuracy Size Accuracy Size Accuracy Size 

A 57.2 ± 2.4 61.9 ± 2.8 62.9 ± 3.3 10 65.6 ± 2.0 4.0 72.7 ± 3.6 2.8 

B 88.7 ± 2.6 89.4 ± 2.1 90.1 ± 2.5 6 96.5 ± 1.3 2.1 97.4 ± 0.6 2.0 

C 64.9 ± 3.5 63.7 ± 4.7 67.2 ± 3.2 10 78.1 ± 2.6 2.8 78.0 ± 3.5 3.1 

D 93.5 ± 1.7 92.8 ± 1.5 94.1 ± 1.6 10 96.2 ± 1.1 2.1 93.0 ± 1.6 2.0 

E 56.0 ± 4.0 60.5 ± 5.1 58.4 ± 4.0 14 66.9 ± 5.6 3.1 75.9 ± 2.8 4.0 

F 47.3 ± 4.8 50.1 ± 3.8 56.2 ± 2.2 18 66.2 ± 1.1 2.7 65.4 ± 1.9 3.0 

G 81.9 ± 2.6 84.2 ± 2.7 87.2 ± 2.1 14 86.1 ± 2.8 4.1 89.5 ± 2.1 3.0 

H 49.5 ± 3.5 51.7 ± 2.8 55.8 ± 5.3 10 53.6 ± 5.4 6.1 64.4 ± 4.0 5.3 

Avg. 67.4 ± 3.3 69.3 ± 3.2 71.5 ± 3.0 11.5 76.2 ± 2.7 3.4 79.5 ± 2.5 3.1 

In Figure 5 we present one of the classification models with real gene names generated 
for one of the cross-validation folds of Parkinson’s disease dataset (GSE6613) by the 
TIGER solution. In the example, the TIGER’s classification model is constituted by  
3 relations with total number of 7 unique genes. We can observe that the first and third 
relation are the typical TSP models or a single k-TSP model with = 2k . The second 
relation is similar to one of the variants of the TST model. For this particular example, 
few genes from Figure 5 are actually related to the SNCA gene and are connected to the 
Parkinson’s disease brain (Lewis and Cookson, 2012). 

Figure 5 Output for Parkinson’s disease dataset (GSE6613) for the TIGER algorithm 

 

As for the direct confrontation between TIGER and EvoTSP, the proposed solution 
significantly outperforms EvoTSP on 4 datasets (A, E, G, H) and is significantly worse 
only on a single dataset (D). On the rest of the datasets there were no statistically 
significant differences. The sizes of the models are similar which suggests that the 
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TIGER algorithm is able to find better relations using the same number of genes than 
EvoTSP. Another important difference is the training time of the classifiers. Due to the 
use of gene ranking in TIGER the number of necessary evolutionary iterations decreased 
on average 5 times in comparison to EvoTSP. Performed experiments showed that, 
depending on the dataset, the TIGER solution needs from several seconds to a few 
minutes on a typical PC (Intel Core I5, 4 GB RAM) to build a classification model. It is 
longer than for RXA algorithms tested with AUREA software which usually needed up 
to a minute to build a model. However, it should be noted that TIGER performs the 
search on all available genes where AUERA software requires a feature selection. 
Without it, the algorithms would have to check all combinations of pairs or triples which 
would take several orders of magnitude more time than for proposed solution. In 
addition, TIGER solution is 2-times faster (in average on all datasets) than its ancestor 
EvoTSP due to the faster convergence of the evolutionary algorithm. 

5 Conclusion 

Existing RXA algorithms are simple, white box solutions that have relatively high 
prediction power on gene expression data. One of their main drawbacks is the calculation 
time which imposes on the algorithms many restrictions and a need of feature pre-
selection. In this paper, we introduce effective classification tool that combines the power 
of EA and relative expression algorithms. Thanks to the specialised genetic operators and 
a multi-objective fitness function the TIGER algorithm is capable of finding complex 
relations between the genes. The efficiency of the solution is achieved by embedding 
additional information about the discriminative power of the genes in the evolutionary 
process. This way the TIGER algorithm does not need any feature selection and allows 
exploring much larger solution space. Experimental validation showed that the TIGER 
solution outperform all other RXA algorithms in context of the prediction power and 
speed. 

We see many promising directions for future research. In particular, we could study 
more deeply the biological aspect of the rules generated by proposed system. We also 
plan to extend the possibility of the TIGER solution to work with unbalanced and 
multiclass microarray datasets. Finally, we consider adapting the proposed classification 
algorithm to work with protein expression databases. 
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