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Abstract. Most of regression learning methods aim to reduce various
metrics of prediction errors. However, in many real-life applications it is
prediction cost, which should be minimized as the under-prediction and
over-prediction errors have different consequences. In this paper, we show
how to extend the evolutionary algorithm (EA) for global induction of
model trees to achieve a cost-sensitive learner. We propose a new fitness
function which allows minimization of the average misprediction cost and
two specialized memetic operators that search for cost-sensitive regres-
sion models in the tree leaves. Experimental validation was performed
with bank loan charge-off forecasting data which has asymmetric costs.
Results show that Global Model Trees with the proposed extensions are
able to effectively induce cost-sensitive model trees with average mispre-
diction cost significantly lower than in popular post-hoc tuning methods.

Keywords: cost-sensitive regression, asymmetric costs, evolutionary al-
gorithms, model trees, loan charge-off forecasting.

1 Introduction

In the vast number of contemporary systems, information including business,
research and medical issues is collected and processed. In real-life data mining
problems, the traditional minimization of prediction errors may not be the most
adequate scenario. For example, in medical domain misclassifying an ill patient as
a healthy one is usually much more harmful than treating a healthy patient as an
ill one and sending him for additional examinations. In finance, investors tend to
sell winning stocks more readily than losing stocks in the sense that they realize
gains relatively more frequently than losses. The sadness that one experiences
in losing the money appears to be greater than the pleasure of gaining the same
amount of money. This strong loss aversion was explained and described in the
prospect theory by Kahneman and Tversky [14] and applied to finance practice
by Shefrin and Statman [25].
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In this paper, we want to tackle the cost-sensitive regression methods. We
focus on extending the existing EA for model tree induction to handle data
with asymmetric costs.

1.1 Background

The decision trees [22] are one of the most widely used prediction techniques.
Ease of application, fast operation and what may be the most important, effec-
tiveness of decision trees, makes them powerful and popular tool [15]. Regression
and model trees [13] may be considered as a variant of decision trees, designed to
approximate real-valued functions instead of being used for classification tasks.
The main difference between regression tree and model tree is that, in the latter,
constant value in the terminal node is replaced by a regression plane. Each leaf
of the model tree may hold a linear (or nonlinear) model whose output is the
final prediction.

Problem of learning an optimal decision tree is known to be NP-complete.
Consequently, classical decision-tree learning algorithms are built with a greedy
top-down approach [21] which usually leads to suboptimal solutions. Recently,
application of EAs [18] to the problem of decision tree induction [2] become
increasingly popular alternative. Instead of local search, EA performs a global
search in the space of candidate solutions. Trees induced with EA are usually
significantly smaller in comparison to greedy approaches and highly competitive
in terms of prediction accuracy [17,7]. On the other hand, the induction of global
regression and model trees is much slower [8]. One of the possible solutions
to speed up evolutionary approach is a combination of EAs with local search
techniques, which is known as Memetic Algorithms [12].

Cost-sensitive prediction is the term which encompasses all types of learning
where cost is considered [28,10] e.g., costs of tests (attributes), costs of instances,
costs of errors. In this paper, we only focus on asymmetric costs, which are
associated with different types of prediction errors.

The vast majority of data mining algorithms is applied only to the classifi-
cation problems [27] while cost-sensitive regression is not really studied outside
of statistic field [3]. In induction of cost-sensitive classification trees, three tech-
niques are popular:

– convert classical decision tree into cost-sensitive one, mainly by changing
the splitting criteria and/or adopting pruning techniques for incorporating
misclassification costs (e.g. [4]);

– application of EAs that induce cost-sensitive trees [16];
– application of universal methods like: cost instance-weighting [26] or post-

hoc tuning solutions e.g. MetaCost [9].

One of the earliest studies of asymmetric costs in regression was performed by
Varian [30]. Author propose LinEx loss function which is approximately linear
on one side and exponential on the other side as an alternative to popular least
squared procedures. Application of different loss functions was later extended
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[5] to LinLin (asymmetric linear) and QuadQuad (asymmetric quadratic) loss
functions. In data mining literature there are only few propositions to handle
asymmetric costs e.g. in [6] authors propose a modified back-propagation neutral
network that applies LinLin cost function.

Recently, post-hoc tuning methods for regression, analogous to ones in cost-
sensitive classification, were proposed [3]. Solutions minimize average mispre-
diction cost under an asymmetric cost structure for regular regression models
post-hoc by adjusting the prediction by a certain amount. In it’s extension [31],
application of polynomial functions as model adjustment is proposed to improve
the cost-sensitive prediction.

1.2 Motivation

Due, to the lack of cost-sensitive regression solutions in data mining literature,
one of the good alternatives are the post-hoc tuning methods [3,31]. However,
limitations of such algorithms are obvious as the tuning procedure cannot incor-
porate cost functions during model learning. In addition, when understanding
and interpretation of generated decisions/rules is crucial, such technique cannot
be applied.

In this paper, we want to show how to extend existing evolutionary induced
model trees to successfully predict under asymmetric losses. In case of evolu-
tionary induced model trees, simple modification of the fitness function, alike
for classification trees [17] is not enough, as the linear (or non-linear) models
in the leaves are usually not evolved but constructed using standard regression
techniques [1,7]. Extensions must also affect the search of cost-sensitive models
in the leaves. Full search of regression models is usually difficult for real-life, large
datasets due to the huge additional solution space to cover. Therefore, in this
paper, we propose two memetic operators that can, together with appropriate
fitness function, efficiently convert cost-neutral model trees into cost-sensitive
ones.

2 Cost-Sensitive Extensions for Evolutionary Induced
Model Trees

In this section we present a combination of evolutionary approaches with local
search techniques to achieve a cost-sensitive learner. At first, we briefly describe
evolutionary evolved model tree called Global Model Tree (GMT ) [7]. This evo-
lutionary induced model tree will serve as an example to illustrate the proposed
extensions and the fitness function to handle data with asymmetric costs.

2.1 Global Model Tree

GMT follows a typical framework of evolutionary algorithms [18] with an un-
structured population and a generational selection. Model trees are represented
in their actual form as typical univariate trees. Each test in a non-terminal node
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concerns only one attribute (nominal or continuous valued). At each leaf a multi-
variate linear model is constructed using standard regression technique [20] with
instances and attributes associated with that node.

Initial individuals are created by applying the classical top-down algorithm
[21]. Ranking linear selection [18] is used as a selection mechanism. Additionally,
in each iteration a single individual with the highest value of fitness function in
current population in copied to the next one (elitist strategy). Several variants
of cross-over and mutations were proposed [7,8] that involve:

– exchanging tests, nodes, subtrees and branches between the nodes of two
individuals;

– modifications in the tree structure (pruning the internal nodes and expanding
the leaves);

– changing tests in internal nodes and extending, simplifying, changing linear
regression models in the leaves.

The Bayesian information criterion (BIC) [23] is used as a fitness function
and its formula is given by:

FitBIC(T ) = −2 ∗ ln(L(T )) + ln(n) ∗ k(T ), (1)

where L(T ) is maximum of likelihood function of the tree T , k(T ) is the number
of model parameters and n is the number of observations. The log(likelihood)
function L(T ) is typical for regression models [11] and can be expressed as:

ln(L(T )) = −0.5n ∗ [ln(2π) + ln(SSe(T )/n) + 1], (2)

where SSe(T ) is the sum of squared residuals on the training data of the tree
T . The term k(T ) can also be viewed as a penalty for over-parametrization and
has to include not only the tree size (calculated as the number of internal nodes)
but also the number of attributes that build models in the leaves.

2.2 Cost-Sensitive Extensions

Extending regular regression models to be cost-sensitive requires several steps.
At first, appropriate measurement must be defined for assessing the performance
of solutions. In our work, we use the average misprediction cost proposed in [3].

Let the dependent variable y be predicted based on a vector of independent
variables x. A regression method learns a prediction model, f : x → y from n
training instances. If the function C(e) characterize the cost of a prediction error
e then average misprediction cost denoted as Amc can be defined as:

Amc =
1

n

n∑

1

C(f(xi)− yi). (3)

Next, to find cost-sensitive regression models in the tree leaves, we propose
BIC extension as fitness function and two local search components that are built
into the mutation-like operator.
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Fig. 1. An example of simple linear regression model f0(x) changed by cost-sensitive
extensions - shift: f1(x) and new model: f2(x)

Fitness Function. We propose a cost-sensitive BIC to work as a fitness func-
tion. We have replaced the squared error loss SSe(T ) from Equation 2 with the
average misprediction cost. To remain balance between complexity term k(T )
and the cost of the tree, we performed additional experimental research to deter-
mine the appropriate value of penalty term, which is now equal (Q(T )+M(T ))
where Q(T ) is the number of internal nodes in model tree T and M(T ) is the
sum of all attributes in the linear models in the leaves.

Shift Regression Model. The idea of our first mutation variant is similar
to the one for cost-sensitive post-hoc tuning method [3]. With the user defined
probability, regression model in the leaf is adjusted by a certain amount denoted
as θ. Let x+ represents instances that are over-predicted and x− instances under-
predicted by an actual regression model in the leaf. The costs for over-prediction
and under-prediction are equal C+ and C−, respectively.

We calculate average misprediction cost separately for x+ and x−, denoted
as Amc+ and Amc− and define the shift θ as:

θ =

⎧
⎨

⎩

−Amc+

C+ ∗ δ, if Amc+ > Amc−

Amc−
C− ∗ δ, if Amc+ < Amc−

, (4)

where δ is equal:

δ =
Amc+ −Amc−

Amc+ +Amc−
rand(0, 1). (5)

Main role the parameter δ is to reduce impact of adjustment when Amc on both
sides of regression model is similar. Multiplication with a random value from 0
to 1 (denoted as rand(0, 1)) extends the number of possible values of θ. Finally,
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the actual regression model in the leaf is updated by adding the calculated
adjustment:

fnew(x) = f(x) + θ. (6)

It is illustrated in Figure 1 where actual regression model f0(x) is replaced by
the shifted one f1(x).

New Cost-Sensitive Model. Second variant of mutation replaces actual re-
gression model with a new one that is built on the subset of instances. If, for the
actual model in the leaf, the Amc+ > Amc− then new cost-neutral regression
model is calculated only for over-predicted instances (x+), otherwise only for
under-predicted (x−). Next, the actual regression model is replaced by the new
one:

fnew(x) =

⎧
⎨

⎩

f(x+), if Amc+ > Amc−

f(x−), if Amc+ < Amc−
. (7)

In contrast to the first extension, this technique allows finding a completely
new model that can decrease Amc for the leaf. Figure 1 illustrates how actual
regression model f0(x) is replaced by the new one denoted as f2(x), calculated
for the x−.

3 Experiments

We have modified cost-neutral GMT algorithm to show, how proposed exten-
sions handle data with asymmetric costs. In this section we show the performance
of CS −GMT (GMT with applied cost-sensitive extensions) on loan charge-off
forecasting data. Thanks to the source code of cost-sensitive tuning method and
its extensions received from authors [3,31] we are able to compare CS −GMT
with post-hoc tuning methods.

3.1 Datasets and Setup

In the paper we used loan charge-off forecasting data from Wharton Research
Data Services (WRDS, http://wrds-web.wharton.upenn.edu). This data is char-
acterized by asymmetric costs on misprediction errors, because under-prediction
of loan charge-off is more costly than over-prediction. If the bank over-predicts
its future loan charge-off, the worst what could happen is the reduction of bank’s
income because there will maintain some extra funds in the loan-loss reserves.
The under-prediction means that the bank did not prepare sufficient provisions
for its loan losses and has not enough reserves which can cause regulatory prob-
lems and significant downturn of its credit rating which is much more dangerous
to the bank.

We used the same settings to prepare and test data as in [31], however, more
recent data were used. In the experiments, 28 quarters from period 2004− 2010
were used with 14 variables related to bank current financial data (described
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and listed in [3,31]), including loan charge-off, in a particular quarter as the
independent variable. The dependent variable is the loan charge-off in the fol-
lowing quarter so the bank can use all useful information while predicting the
next quarter loan charge-off.

We generated 27 datasets from 28 quarters because from the last quarter of
2010 only loan charge-off value were used as 2011 data were not available in
WRDS yet. For each dataset, prediction model was trained on one quarter and
tested on the next one and so on. Therefore, there were 26 training datasets (third
quarter of 2010 was used only for testing) and 26 independent testing datasets
(first quarter of 2004 was used only for training). In addition, observations with
missing values were removed and, to reduce the extent of skewness, the natural
logarithm transformation was performed. Average number of instances in each
quarter equals 7695 (minimum: 6992 and maximum: 8315). Following [31], we
used LinLin cost function and examined cost ratios for under-prediction to
over-prediction as follows: 10 : 1, 20 : 1, 50 : 1 and 100 : 1. The same three base
regression models: standard least-squares linear regression (LR), M5 model tree
[29] and back-propagation neutral network (NN)[24] were post-hoc tuned for
the comparison purpose to CS −GMT . Original settings for all tuned methods
and CS −GMT solution were applied through all experiments.

3.2 Results

Table 1 summarizes the results of the Amc for three base regression methods
tuned by the algorithms described in [3,31] and proposed CS −GMT solution.
Each reported quantity is an average value over 26 independent testing datasets
(over 200 000 tested instances). The NONE column refers to the results without
tuning or cost-sensitive extensions, BSZ refers to the tuning method proposed
by Bansal et al. [3] and LINEAR is a linear extension of BSZ algorithm by
Zhao et al. [31]. Finally, last column shows the results of CS −GMT : proposed
cost-sensitive extensions denoted as CS extensions applied to GMT .

Results enclosed in Table 1 show that the both post-hoc tuning methods
improves the performance of regression model. The extension of BSZ called
LINEAR, like it was shown in the paper [31], is significantly better than its
predecessor. When only post-hoc tuned algorithms are considered, we can ob-
serve that the best performance is achieved by NN . However, when we focus on
the last column, we see that Amc can be decreased even more. The CS−GMT
solution outperforms all tuned base regression models under every cost ratio.
Wilcoxon signed rank test for CS − GMT and linearly tuned NN under ev-
ery cost ratio showed that the differences of Amc between both algorithms are
statistically significant (P value < 0.0001). There is also a significant difference
between linearly tuned GMT and CS − GMT which suggests that there is a
still significant space for improvement for tuned methods.

The cost reduction between the best out of three linearly tuned algorithms
(NN) and CS − GMT is in the range of 7.7% to 9.4% which may be seen by
some as not very impressive. However, we must remember that the cost values
are on a natural log scale as the values of dependent variable loan charge-off
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Table 1. Average misprediction costs for post-hoc tuned base regression algorithms
and cost-sensitive extensions for Global Model Tree

Algorithm Cost ratio NONE BSZ LINEAR CS extensions

LR 10 7.41 3.78 3.81 -
M5 10 7.29 4.16 3.88 -
NN 10 8.16 3.69 3.57 -
GMT 10 7.07 3.81 3.65 3.29

LR 20 14.06 4.84 4.42 -
M5 20 13.78 5.47 4.86 -
NN 20 15.60 4.62 4.26 -
GMT 20 13.66 5.07 4.27 3.85

LR 50 34.02 6.24 5.23 -
M5 50 33.23 6.03 6.44 -
NN 50 37.92 5.69 5.09 -
GMT 50 32.96 6.40 6.11 4.66

LR 100 67.27 7.06 5.85 -
M5 100 65.66 7.24 7.94 -
NN 100 75.12 6.50 5.80 -
GMT 100 64.15 7.03 5.98 5.27

were transformed by the natural logarithm. Therefore, the real cost reduction
on the original scale is in range 24.2% to 40.7% and therefore, can be attractive
in bank loan charge-off forecasting problem.

Application of proposed cost-sensitive extensions does not only significantly
reduce Amc. The important benefit of proposed extensions, in context of GMT
is that the whole tree: test in internal nodes and models in the leaves, fits to the
analyzed, cost-sensitive problem. Therefore, decisions from CS−GMT are much
easier to interpret. Identifying patterns and finding explanations for predictions
may be difficult for tuned regression models because all rules obtained by the
phase of learning were cost-neutral.

4 Conclusion and Future Works

In this paper, we propose extensions for evolutionary induced model trees to
achieve cost-sensitive learners. We present a cost-sensitive BIC to work as the
fitness function and allows the algorithm to minimize the average misprediction
cost. Two specialized memetic operators that search for cost-sensitive regression
models in the tree leaves are also proposed. Those local optimizations of the
regression models are simple, complementary and easy to apply.

Experiments performed of 27 real-life datasets show that there is a significant
difference between post-hoc tuned methods and solutions that explicitly incor-
porate cost functions during model building - like proposed CS − GMT . The
real, average cost reduction between the best out of 4 tuned algorithms (linearly
tuned NN) and proposed CS−GMT is over one third. In addition, as generated
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decisions and models from CS −GMT take into account costs during learning
phase, they can be used to learn and understand underlying processes from the
data.

There are a number of promising directions for future research. In particular,
we should consider testing different cost functions and handling different types
of costs like e.g. cost of attributes. Application of the proposed extensions to
other EA solutions that construct models with standard regression techniques
and testing other forecasting problems requires further extensive research, which
we leave for the future.
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