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ABSTRACT
Random Forest (RF) is one of the most popular and effective ma-
chine learning algorithms. It is known for its superior predictive
performance, versatility, and stability, among other things. How-
ever, an ensemble of decision trees (DTs) represents a black-box
classifier. On the other hand, interpretability and explainability are
ones of the top artificial intelligence trends, to make predictors
more trustworthy and reliable. In this paper, we propose an evolu-
tionary algorithm to extract a single DT that mimics the original
RF model in terms of predictive power. The initial population is
composed of trees from RF. During evolution, the genetic operators
modify individuals (DTs) and exploit the initial (genetic) material.
e.g., splits/tests in the tree nodes or more expanded parts of the
DTs. The results show that the classification accuracy of a single
DT predictor is not worse than that of the original RF. At the same
time, and probably most importantly, the resulting classifier is a
single smaller-size DT that is almost self-explainable.

CCS CONCEPTS
• Computing methodologies → Ensemble methods; Classifi-
cation and regression trees; Supervised learning.
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1 INTRODUCTION
Artificial intelligence (AI) has undergone significant and continu-
ous progress in the last two decades [11]. However, with the high
increase in the predictive power of models and solving many dif-
ficult problems, the fast growth of model complexity and using
non-transparent block-box predictors could be observed. In many
domains (like medicine, insurance or penology), it is not rare that
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a clear explanation for individual decisions, verifiability, and com-
prehension are very desired. Thus, recently, the explainability and
interpretability of the models have gained the attention of both
the scientific and business communities, becoming one of the top
trends in AI.

Decision trees (DTs) are a supervisedmachine learning (ML) tech-
nique that can be used for classification and regression problems
[7]. DTs are considered as an interpretable and self-explanatory ML
algorithm that belongs to eXplainale AI (XAI). Despite more than
50 years of research on DTs, they are constantly being explored.
In this paper, we show how an interpretable DT can be generated
starting from a black-box strong classifier while maintaining the
predictive performance. We chose Random Forest (RF) [6] which
is well known for its superior predictive power. However, it is not
easy to explain the rationale behind the RF-based classifications
because each of them is derived from the results of multiple DTs.

We propose an evolutionary approach that is novel to previous
attempts. In the most related work [12], a set of rule conjunctions
representing the original RF model were created, filtered (using
heuristics), and, then, hierarchically organized into DT (using the
entropy measure). It was a robust solution, however, it limited the
search space due to the computational complexity. For example, a
linear increase in the forest size resulted in an exponential growth in
the conjunction set size. Other works mainly focused on simplifying
DT ensembles, e.g., pruning [5] or generating simple rules greedily
combining and simplifying their base trees [9].

2 EVOLUTION OF AN INTERPRETABLE
DECISION TREE FROM RANDOM FOREST

The general idea of extracting a single DT from an RF model is
presented in Fig. 1. It is based on an evolutionary induction and
extends an existing tree inducer from a well-founded Global Deci-
sion Tree (GDT) framework [4]. We call the proposed approach as
RF-based GDT (RFbGDT). The evolution starts with generating an
initial population. First, the RF classifier is trained and DTs from the
ensemble are used as the initial individuals. By default, all generated
DTs are employed, but it is not obligatory.

Concerning the RF training, in brief, each DT in the forest is
induced using random subsets of the training dataset [6]. Moreover,
the algorithm when creating subsequent tree nodes (splits/tests,
leaves) checks a random subset of attributes and chooses the best
split among them (in a greedy top-down manner). The forest of
multiple weak DTs forms a robust classifier, in aggregate.

In the next step, the population of DTs is modified and evaluated
in the evolutionary loop (see Fig. 1). The solution follows the typical
evolutionary algorithm schema with an unstructured, fixed-size
population and a generational selection. The individuals in the
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Figure 1: General idea of the proposed algorithm for the induction of an interpretable decision tree from the RF classifier.

population are represented and processed in their actual form as
binary classification trees with univariate tests in the internal nodes
[4]. In each generation (iteration), genetic operators (mutation and
crossover) alter DTs and force the search for the best single tree.
The linear ranking selection is applied, and, the best individual in
the current population is copied to the next one (elitist strategy) [8].
The evolution ends when the maximum number of generations is
reached or the best DT in the population does not improve during
the fixed number of generations. Finally, the best DT in the popula-
tion is taken as an (interpretable) representation of the initial RF
model.

The genetic operators modify DTs, and, if needed, they use
the DTs from the initial forest or their parts, e.g., tests, subtrees,
branches (i.e., RF-based genetic material). Tests from the RF are ex-
tracted (e.g., pairs of attribute and threshold, for numeric features),
and, they feed the bank of tests (see Fig. 1). It includes all tests from
the RF trees, by default. Currently, information about the position
in the original tree or prediction error of tests is not used.

The mutation starts with selecting a tree node type (leaf or inter-
nal node) and, then, one of the nodes to be affected. The procedure
is based on the ranking linear selection [8] considering the posi-
tion (tree level) and reclassification error of nodes [4]. Different
specialized variants of mutations are applied, e.g.:

• new test - replacement the current test by a random one from
the bank of tests;

• prune - changing an internal node into a leaf;
• expand - changing a leaf into an internal node using a random
test from the bank of tests;

• exchange - exchanging tests/subtrees between parent and
son nodes.

The crossover combines elements of two existing DTs, and two
new individuals are created. Because the initial DTs come from the
RF, we can simplify that its role is to exchange information between
the tree of the forest (i.e., exchange genetic material) and, finally, to
aggregate the most relevant in a single tree. The crossover begins
by randomly selecting pairs of DTs. Then, in each DT, the position
(node) is chosen, in a similar way as during the mutation. The
exchange of information is carried out using specialized operator
variants, e.g.:

• exchange tests - exchanging tests between nodes of two af-
fected DTs;

• exchange subtrees/branches - exchanging subtrees/branches
between nodes of two affected DTs.

• asymmetric crossover - transfer subtrees asymmetrically
where the subtree of the first/second individual is replaced
by a new one that was duplicated from the second/first in-
dividual; it is preferred that the receiver node has a high
reclassification error, while the donor node a small error
value as it is duplicated [4].

In each evolutionary loop, all new DTs are evaluated. The orig-
inal GDT system provides various multi-objective optimization
strategies, including weight formula, lexicographic analysis and
Pareto-dominance [4]. In this paper, a simple weighted form of the
fitness function is used:

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 (𝑇 ) = 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑇 ) − 𝛼 · (𝐶𝑜𝑚𝑝 (𝑇 ) − 1.0) . (1)

It maximizes accuracy (𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑇 )) estimated on the training
dataset and minimizes the complexity term (𝐶𝑜𝑚𝑝 (𝑇 )) of the tree
𝑇 . The complexity term equals the tree size which is usually the
number of tree nodes. 𝛼 is a user-defined parameter that reflects the
relative importance of the complexity term and, thus, may be used
to steer the tree size and interpretability (default value is 0.001).
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3 EXPERIMENTAL VALIDATION
3.1 Setup
Both real-life and artificial datasets have been used in the prelimi-
nary validation. The details of each one are presented in Table 1.
We have chosen four real-life datasets (with a different number of
samples and attributes) from the UCI Machine Learning Repository
[1]. They were also tested in the related previous work [12]. Con-
cerning the artificial datasets, we generated two two-dimensional
problems to easily show the distribution of samples and decision
boundaries. The first one was called Slope (see Fig. 3(a) top), while
the second one House (see Fig. 3(a) bottom).

The RF algorithm settings were chosen as in the related work
[12], e.g., 100 of estimators (DTs) in a forest, the maximum depth of
each DT = 5, and the minimum number of samples in a leaf = 5. The
main parameters of the evolutionary induction were as follows: pop-
ulation size = 100 individuals, crossover probability = 20% assigned
to the tree, mutation probability = 80% assigned to the tree, elitism
rate = 1 individual per generation, number of iterations = 1 000,
and the probabilities of different variants of crossover/mutation
were uniformly distributed. 10-fold cross-validation was repeated
10 times and the average results are presented.

3.2 Results and Discussion
The results are presented in Table 2. We show both the classification
accuracy and the tree size (number of nodes). In the case of RF, it
is the average size of a tree in the forest (so the actual size of
an ensemble is 100 times bigger). We also present the results for
GDT [4] where the search is more global, i.e., not limited to the
RF genetic material. In most of the cases, the RFbGDT algorithm
gives a comparable accuracy to the RF classifier. For two datasets
(Pima andWine), the accuracy is slightly lower. However, bearing
in mind that RFbGDT generates smaller DTs and the final classifier
consists of only a single DT, the results seem to be very promising.

Comparing GDT and RFbGDT, we see that the global search can
give smaller DTs but sometimes at the cost of an accuracy drop.
The comparison with the previous related work (called RF-FBT)
[12] is also in favor of RFbGDT. The obtained RFbGDT accuracy is
at least not worse but in most of the cases is a few percent better.
We allow the evolution to work on all the genetic material coming
from the RF model and do not limit the search space like in RF-FBT.
We have left more in-depth validation and comparison for future re-
search (statistical analysis, more datasets, etc.). However, the direct
comparison between these two approaches is not simple. While it
is quite easy to provide the same RF model for the initialization,
these two solutions are based on totally various approaches and
can be tuned in different ways. For example, the independent pa-
rameters can influence the final accuracy and/or DT size, like the
value of 𝛼 parameter in RFbGDT or, on the other hand, the filtering
of conjunction set in RF-FBT.

The evolutionary induction of DTs is known to be time-demanding
in comparison to the greedy top-down algorithms [2]. Concerning
the presented results, the time needed to induce a single DT was
at most in seconds or a few minutes using only a sequential CPU
code. The execution time is going to increase fast with the increase
in the number of samples. Fortunately, the evolutionary (global) DT
induction was successfully parallelized both on computer clusters
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Figure 2: Examples of DTs trained by RFbGDT on the Slope
dataset.

and GPUs [10], which would also allow us to deal with large-scale
data mining. In RF-FBT [12], also the time of computations was one
of the challenges. It has led to a reduction of the search space, e.g.,
the number of considered conjunctions was limited.

We also show an example visualization of the DT boundaries
in Figure 3 (for two-dimensional datasets Slope (top) and House
(bottom)). On the left (a), the analytical boundaries (used to generate
datasets) are presented. In the middle (b), the boundaries of all
DTs in one of the forests are drawn. On the right (c), we see the
boundaries for the single corresponding DT. It is easily visible
that single DT models are more transparent and much easier to
interpret than their RF counterparts. Concerning the House dataset,
interestingly, we can see that the split in 𝑥 = 1.5 was not found
by the RF classifier. This resulted in the lack of it also in the single
DT predictor (see arrow in Fig. 3(c) bottom). The split would be
included in RF when the maximum tree depth was increased.

However, we have to be conscious that the classification accu-
racy may impair a little when a single DT tries to mimic an RF
predictor. In the case of Slope and House datasets, the drop is only
about 0.5%. Obviously, this accuracy impairment can depend on
the DT size, as it is shown in Figure 2. We see two examples of DTs
training by RFbGDT, and the bigger one provides better accuracy.
If comparing them more deeply we can observe that they consist
of similar building blocks (e.g., 𝑦 < 0.99 and 𝑥 < 1.18 or 𝑥 < 1.19,
the nodes are marked by #), coming from the RF genetic material.

4 CONCLUSION
We propose an evolutionary approach to extract an interpretable
DT from the RF classifier. The preliminary validation shows it is
a robust and fast solution that can compete with the previous one
[12]. It can be extended to other types of DTs, like regression ones
[3], as well as to other ensemble techniques (e.g., XGBoosting [13])
or neural networks.

ACKNOWLEDGMENTS
This work was supported by Bialystok University of Technology
under the Grant WZ/WI-IIT/4/2023 founded by Ministry of Science
and Higher Education

293



GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal K. Jurczuk et al.

Table 1: Characteristics of the real-life and
artificial datasets: name, number of sam-
ples, number of attributes

Dataset Number Number
of samples of attributes

Banknote 1372 4
Magic 2000 10
Pima 768 8
Wine 178 13

Slope 10 000 2
House 10 000 2

Table 2: Comparison of GDT, RFbGDT and RF inducers. The size equals the
number of tree nodes, while, in the case of RF, it is the average tree size in the
forest (average number of nodes). Accuracy of a classical DT can be found in [12].

Dataset GDT RFbGDT RF
accuracy size accuracy size accuracy size

Banknote 97.86±1.52 15±3.1 98.37±1.18 17±2.06 98.16±1.34 27±0.55
Magic 83.01±1.03 17±1.93 82.82±0.81 17±2.13 82.99±0.82 54±0.52
Pima 74.48±4.57 25±5.89 74.49±4.54 25±6.08 76.48±4.34 34±0.75
Wine 93.99±5.35 13±2.47 92.80±5.23 12±2.04 97.63±3.23 10±0.31
Slope 98.49±0.34 11±0.0 99.01±0.34 14±1.39 99.48±0.26 32±0.72
House 97.05±0.97 14±2.07 98.52±0.52 22±2.97 98.98±0.40 40±0.59

0 1 2 3

x

0

1

2

3

y

0 1 2 3

x

0

1

2

3
y

0 1 2 3

x

0

1

2

3

y

0 1 2 3

x

0

1

2

3

y

0 1 2 3

x

0

1

2

3

y

0 1 2 3

x

0

1

2

3

y

(a) analytical (b) RF (c) RFbGDT
Figure 3: An example visualization of decision boundaries: (a) analytical as well as of (b) RF (c) RFbGDT classifiers, for artificial
datasets Slope (top) and House (bottom).
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