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ABSTRACT

This paper concerns the evolutionary induction of decision trees

(DT)s. Noting that manyDTs or their parts reappear during the evo-

lution, a multi-tree concept is introduced. A multi-tree integrates

all trees with the same test in the root. The differences between

trees (below the root) are saved as variants, while the same DT

parts are shared. Allmulti-trees are stored in an external repository

that keeps the entire search history. We show that such a reposi-

tory can achieve not only the goal of duplicated calculation preven-

tion, but also better understanding of the evolutionary DT induc-

tion. The road to finding the best individual is easily retrieved, ex-

ploitation vs. exploration can be addressed, or similarities between

individuals can be measured.

CCS CONCEPTS

• Computing methodologies → Supervised learning; Classi-

fication and regression trees.
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1 INTRODUCTION

Decision trees (DTs) are popular techniques in the field of eXplain-

able Artificial Intelligence. Traditionally, DTs are induced using a

top-down greedy search that may lead to sub-optimal solutions.

One of the alternatives is an evolutionary induction [1]. It searches

for the tree structure and tests globally, which results in less com-

plex DTs with at least comparable prediction performance. How-

ever, such an approach is much more computationally complex.

The fitness calculations can become severe computational bottle-

neck, especially for big data [3].
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In this paper, we investigate the global DTs induction that fol-

lows the typical evolutionary algorithm schema with an unstruc-

tured, fixed size population and a generational selection. Individu-

als in the population are represented and processed in their actual

form as binary classification trees with univariate tests in the in-

ternal nodes [3]. In each generation, genetic operators (mutation,

crossover) differentiate DTs and force the global search. A fitness

function is based on a simple weight formula that minimizes the

reclassification error and the tree complexity at the same time.

The selection (with elitism), genetic operators and convergence

lead to many similarities between individuals in successive popu-

lations [2, 4]. Both the mutation and crossover modify more prob-

ably only small parts of DTs. The selection replicates better solu-

tions and generates DTs copies. Based on these observations, we

challenge to create a special structure (called multi-tree) not only

to remember and follow the similarities and differences but also to

share the same DT parts and limit redundant calculations.

2 MULTI-TREE REPOSITORY APPROACH

A multi-tree can be perceived as a special structure to group (rep-

resent) all DTs with the same test in the root node. The root’s test

is crucial as all other tests need to be considered in the context

of preceding tests. Figure 1 illustrates the integration of various

trees into one multi-tree. All three DTs start with the same test,

while the differences occur at lower levels of DTs. The root node

and other matched tree parts are shared, while the differences are

stored as variants locally in the nodes where they occur.

A DT variant can be interpreted as a unique DT (unique struc-

ture and tests). Variants are globally numbered inside each multi-

tree. If in any node below the root a difference occurs, a new vari-

ant is created and noted in multi-tree nodes. Each multi-tree node

contains the vector of nodes (tests/leaves) that are represented by

it with the corresponding variant IDs (see Figure 2). During the

evolution, one DT variant can appear many times.

The repository of multi-trees is built incrementally during the

evolution. When the evolution stops, it keeps the entire search his-

tory (see Figure 3). Each time when a new individual (DT) appears

in the population, it is archived in the repository. First, the repos-

itory is searched for a multi-tree with the same test in the root

node. If it is found, the new DT is integrated (added) into it. The

differences below the root level are searched, and if needed, a sub-

sequent variant is created, while the same DT parts are shared.

If any multi-treewith the same test in the root node is not found,

a new multi-tree is created. The initial multi-tree contains only

one variant. Multiple statistics are gathered in each multi-tree, e.g.,

the total number of included trees and variants or the point in the

evolution when each DT was generated (iteration and individual
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Figure 1: The concept of a multi-tree.
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Figure 2: Themulti-treenode representing 4 different nodes.

Figure 3: The repository of multi-trees.

index inside the population). Moreover, in each multi-tree node,

the number of training objects that fall into the node is stored.

3 EXPERIMENTS AND CONCLUSIONS

Preliminary validationwas performed on an artificial dataset called

chess3x3 (a classification problem with 2 classes, 2 continuous val-

ued attributes and objects arranged on a 3 × 3 chessboard) with

1 000 000 objects [3]. A default setup was used with the population

size = 64 individuals and the maximal iteration number = 1 000.

The number of individuals (DTs) generated in one run is 64 000.

They are represented by only 3 844 multi-trees archived in the

repository. The total number of variants (unique DTs) is 30 549.

It shows us that for less than 50% of DTs, the fitness calculations

are really needed. Moreover, the number of multi-trees indicates

how many times does the test in the root node actually needs to

be performed for training data (3 844 instead of 64 000 times).

Figure 4 presents the capacity of multi-trees gathered in the

repository in a typical run. We see that the number of multi-trees
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Figure 4: Capacity of multi-trees archived in the repository.

with a single variant equals approximately 2 000, and it decreases

exponentially to 1 when the capacity grows. The three most ca-

pacious multi-trees include 725, 6 481 and 7 334 variants. Inter-

estingly, the best individual is included in the ’biggest’ multi-tree

(with 7 334 variants). It is found in the 935-th iteration as a 6262-th

variant. The detailed time analysis of successively generated vari-

ants (not shown here) allows us to follow the whole path to obtain

the best DT. Another application of the repositorymay be the anal-

ysis of exploration and exploitation strength based on the number

of multi-trees vs. their capacity (size). More multi-trees indicates

more exploration, bigger multi-trees suggest more exploitation.

The similarities between variants are shared inside a multi-tree.

Thus, we can easily measure the fitness calculations redundancy

by finding the minimal and maximal number of tests (on training

data) to be performed. They are calculated based on the number of

training objects in each tree or multi-tree node, correspondingly.

The maximal number is when for all individuals during the whole

evolution all training objects are passed through each tree - from

the root till leaves. The minimal number is when only not previ-

ously occurring evaluations are performed. For 1 000 000 objects of

chess3x3, the maximum number of evaluations equals almost 200

trillion, and the redundancy is about 90%! So, the upper bound for

the acceleration is ≈ 10× just by eliminating the redundant calcu-

lations. In a recent study [2], it was shown that even when a rel-

atively small number of last DTs is archived and a few similarity

levels are considered, a substantial acceleration may be provided.

In conclusion, we show that the application of multi-tree con-

cept may reveal the inside of the evolutionary DT induction. More-

over, if it would be directly used during the evolution, the memory

complexity would increase but a large speedup would be provided.
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