
Accelerated Evolutionary Induction of Heterogeneous Decision
Trees for Gene Expression-Based Classification

Marcin Czajkowski
Bialystok University of Technology

Poland
m.czajkowski@pb.edu.pl

Krzysztof Jurczuk
Bialystok University of Technology,

Poland
k.jurczuk@pb.edu.pl

Marek Kretowski
Bialystok University of Technology,

Poland
m.kretowski@pb.edu.pl

ABSTRACT
Decision trees (DTs) are popular techniques in the field of eXplain-
able Artificial Intelligence. Despite their effectiveness in solving
various classification problems, they are not compatible with mod-
ern biological data generated with high-throughput technologies.
This work aims to combine evolutionary induced DT with a re-
cently developed concept designed directly for gene expression
data, called Relative eXpression Analysis (RXA). We propose a new
solution, termed Evolutionary Heterogeneous Decision Tree (Evo-
HDTree), which uses both classical univariate and bivariate tests
that focus on the relative ordering and weight relationships be-
tween the genes in the splitting nodes. The search for the decision
tree structure, node representation, and splits is performed globally
by the evolutionary algorithm.

To meet the huge computational demands, we enriched our
solution with more than a dozen specialized variants of recombina-
tion operators, GPU-computed local search components, OpenMP
parallelization, and built-in gene ranking to improve evolution-
ary convergence. Experiments performed on cancer-related gene
expression-based data show that the proposed solution finds ac-
curate and much simpler interactions between genes. Importantly,
the patterns discovered by EvoHDTree are easy to understand and
to some extent supported by biological evidence in the literature.

CCS CONCEPTS
•Computingmethodologies→Classification and regression trees;
Supervised learning by classification; • Applied computing →
Bioinformatics.

KEYWORDS
evolutionary data mining, decision trees, relative expression analy-
sis, gene expression data
ACM Reference Format:
Marcin Czajkowski, Krzysztof Jurczuk, and Marek Kretowski. 2021. Accel-
erated Evolutionary Induction of Heterogeneous Decision Trees for Gene
Expression-Based Classification. In 2021 Genetic and Evolutionary Compu-
tation Conference (GECCO ’21), July 10–14, 2021, Lille, France. ACM, New
York, NY, USA, 9 pages. https://doi.org/10.1145/3449639.3459376

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’21, July 10–14, 2021, Lille, France
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8350-9/21/07. . . $15.00
https://doi.org/10.1145/3449639.3459376

1 INTRODUCTION
The rapid growth and popularity of high-throughput technology
[22] have led to increasing demand for new solutions in molecular
biology analysis. Most of them fall under the discipline called data
mining, an umbrella term that encompasses a wide range of tools
and techniques for extracting hidden knowledge from large quan-
tities of data. Working with biomedical data can be challenging
due to its enormous dimensionality, natural diversity, experimental
noise, and other perturbations. Moreover, the large size of the data
as well as the computational complexity of the algorithms is often
a bottleneck in processing and analyzing real genomic data. Finally,
currently developed machine learning algorithms for biomedical
data tend to focus almost exclusively on prediction accuracy and
propose complex predictive models. Such an approach hinders the
process of uncovering new biological understanding and is often
an obstacle for mature applications [2].

In this research, we focus on the more underappreciated but
much-needed computational methods for biomedical analysis in
the field of eXplainable Artificial Intelligence (XAI) [26]. These
solutions can perform predictions efficiently, but more importantly,
they provide insight that may help identify relationships between
specific features and improve biomarker discovery. After all, this is
the ultimate goal of data-driven biology. To address this problem,
we extended the Decision Tree (DT), which is a highly popular
white-box approach [16], to unlock its potential in modern biologi-
cal data analysis. Therefore, we designed an evolutionary algorithm
that combines DTs with a powerful collection of new computational
methods with easily interpretable models for classifying gene ex-
pression data, called Relative eXpression Analysis (RXA) [10], to
take the best of both worlds. Although we consider only genomic
data, we believe that our approach can also be applied to other types
of highly multidimensional biological data, including metabolomics
and proteomics.

DTs are known for their ease of use, speed of classification, and ef-
ficiency [16]. However, currently traditional single-tree approaches
are not really applicable for genomic data classification. Existing
research has shown [17] that DT algorithms often induce classifiers
with weaker prediction so there is more interest in trees as sub-
learners of an ensemble learning such as Random Forests. These
solutions mitigate the problem of low accuracy by averaging or
adaptively combining multiple trees. However, when modeling to
understanding underlying processes, such methods are not as use-
ful because they generate more complex and less understandable
models.

In contrast, RXA represents a family of new methods designed
directly for gene expression data [10]. In general, they focus on

946

https://doi.org/10.1145/3449639.3459376
https://doi.org/10.1145/3449639.3459376

GECCO ’21, July 10–14, 2021, Lille, France Czajkowski, M., Jurczuk, K., Kretowski, M.

finding interactions among a small collection of genes by study-
ing e.g. the relative ordering of their expressions rather than their
raw values. Classification algorithms based on this methodology
are known to be accurate, robust to methodological and technical
factors, study-specific biases as well as normalization and standard-
ization procedures. However, one of the most important limitations
of the RXA concept is enormous computational complexity, which
forces the use of heavy feature selection and other simplifications
or restrictions to the algorithm implementation.

Our paper makes several important contributions to the litera-
ture. First, we propose a new hybrid method called Evolutionary
Heterogeneous Decision Tree (EvoHDTree), which combines the
power of DT and unified variants of the RXA-family algorithms
based on ordering and weight comparisons. Its novelty lies in its
flexible tree node representation, which involves both classical
univariate and bivariate tests inspired by the RXA concept. Such
a self-adaptive EvoHDTree can not only explore a much larger
solution space but also may reduce over- and under-fitting that
is common for high-dimensional biological data [7]. Second, by
incorporating our knowledge of decision tree induction and RXA
methodology and designing more than a dozen specialized variants
of recombination operators, we improved evolutionary exploration
and exploitation.

The search for the overall decision tree structure, node repre-
sentations, and splits is performed globally by the evolutionary
algorithm. To overcome the enormous computational complex-
ity resulting from the use of RXA, we implemented OpenMP and
GPU-based parallelization. Furthermore, more discriminative genes
based on embedded ranking are preferred. Finally, experiments
performed on cancer-related gene expression-based data indicate
that the proposed heterogeneous tree representation finds accurate
and more precise,gene-gene interactions that are not limited by the
representation. We believe that the combination of these two XAI
approaches has the potential to provide far-reaching benefits in the
field of computational molecular biology.

This paper is organized as follows. Section 2 presents related
work along with RXA, DTs, and topic-related parallelization. Sec-
tion 3 describes in details our hybrid EvoHDTree solution and
Section 4 possible acceleration. This is followed by experimental
validation on real-life datasets, and in the last section, we summa-
rize the work and present possible future work.

2 RELATEDWORK
A brief taxonomy of the family of RXA algorithms and DTs inducers
are shown in Figure 1. The proposed EvoHDTree system applies to
all the boxes highlighted in gray.

2.1 Decision trees
DTs have a knowledge representation structure consisting of nodes
and branches, where: each internal node is associated with a test
on one or more attributes; each branch represents a test result; and
each leaf (terminal node) is designed by a class label. Typically, a tree
induction algorithm partitions the feature space using axis-parallel
hyperplanes according to the given goodness of split. We call such
trees univariate because the tests in the internal nodes consist of a
single feature. Trees with multivariate tests (usually called oblique)
are based mainly on linear combinations of multiple dependent
attributes and divide the feature space by a non-orthogonal hyper-
plane.

Since it is known that the induction of an optimal DT is an
NP-complete problem, [14], practical learning algorithms must be
heuristically enhanced. There are two main types of tree induc-
tion: greedy search [23] and evolutionary approach [1]. In order
to mitigate some of its negative effects of locally optimal solutions
generated by the greedy top-down inducers, a wide range of meta-
heuristics have been proposed [1]. An evolutionary induced DT for
gene expression data is presented in [2] where the authors propose
HEAD-DT inducer. This solution was later contrasted with an Evo-
lutionary Multi-Test Tree [7], which globally searched for the sets
of similar univariate tests within each node of the tree.

Figure 1: The brief taxonomy of the RXA and DT family of algorithms. Gray boxes refer to the proposed EvoHDTree system.

947

Accelerated Evolutionary Heterogeneous DT for Gene Expression-Based Classification GECCO ’21, July 10–14, 2021, Lille, France

2.2 RXA-based classifiers
The basic concept of Relative Expression Analysis (RXA) focuses on
studying the relative ordering of expression among a small number
of transcripts. A pioneering study in 2004 proposed the Top Scoring
Pair (TSP) method, [11], which is a straightforward prediction rule.
It’s based on the RXA concept that uses building blocks of rank-
altered gene pairs in case and control comparison. Such gene pairs
can be viewed as bioloдical switches that can be directly related to
regulatorymoti f s or other properties of transcriptional networks.
The discriminating power of each pair of genes i , j was measured
by the absolute difference between the probabilities Pi j of the event
(xi > x j) in two classes. One of the first extensions of the TSP
solution is the k-TSP algorithm [25]. By using no more than k
top scoring disjoint gene pairs (k determined by internal cross-
validation) and simple majority voting, it was able to significantly
improve classification accuracy. An alternative Top Scoring N (TSN)
[19] approach focuses on exploring relationships between more
than two genes. A more general form of gene-gene interaction
calledweiдhtinд relationship has been proposed in [6]. The authors
introduced an additional component w , which is the ratio of the
genes relationships in a pair: (xi > w × x j) among instances.

To the best of our knowledge, the only research combining raw
data values with RXA was proposed in [13]. The authors proposed
an ensemble greedy classifier called VH-k-TSP to evaluate feature
pairs based on vertical and horizontal relationships. Experimental
evaluation was performed on gene expression and metabolomic
data. The application of EA to RXA was initially proposed in the
EvoTSP solution [5]. Recently, it has been extended to use DT with
node splits based on a single Weight TSP pair in the REDT [6]
algorithm. The results indicate that evolutionary search is a good
alternative to traditional RXA algorithms. Thus, our motivation is
to combine all these three concepts: single-attribute tests from VH-
k-TSP with ordering and weight gene-pair relationships to see if
such self-adapting heterogeneous tree can improve the discovered
patterns and relations within the data.

2.3 Parallelization
Fortunately, EAs are naturally amenable to parallelism, and the ar-
tificial evolution can be implemented in a variety of ways [12]. Par-
allelization can also be performed by different paradigms: OpenMP,
which uses a shared address space and works well on multicore
chips; Message Passing Interface (MPI) for computer clusters; gen-
eral -purpose computation on graphic processing units (GPGPU).
In the context of parallel DT induction, most of the research fo-
cuses on top-down induced trees, such as CUDT [18], to find the
best locally optimal tests through parallel attribute processing. The
second type of DT systems involve parallelization of ensembles of
trees, such as random forests where a single CUDA thread builds
one tree in a forest.

As for evolutionary induced DTs, we found only a few works
that deal with parallel extensions of the Global Decision Tree (GDT)
data mining system [17]. The best results were obtained for GPU-
accelerated solutions, which were able to induce trees two orders
of magnitude faster compared to the original CPU-based version.
As for RXA, GPU-accelerated parallelization appears to be highly
effective [19].

3 EVOHDTREE
This paper presents an accelerated Evolutionary Heterogeneous
Decision Tree (EvoHDTree) along with a new, richer language for
representing decision trees. The proposed solution extends the
Global Decision Tree (GDT) system [17] which can be seen as an
underlying framework for inducing different types of trees.

3.1 Representation
Since the number of EvoHDTree nodes and their representation is
not known in advance, we use a tree-encoding schema where the
individuals are in their actual form as potential tree solutions.

The overall structure of EvoHDTree is not much different from a
standard binary classification tree, e.g., C4.5 [21] as it is illustrated
in Figure 2. The main change is that each internal node of the tree
can contain a different split representation composed of:

• univariate test: a typical inequality test as in C4.5 [21] con-
sisting of one continuous attribute and a threshold value (e.g.
xi > 10);
• TSP-like test: an adaptation of the TSP algorithm [5] that uses
a pair of genes and their ordering relation to split instances
(e.g. xi > x j);
• Weight TSP-like test (see Algorithm 1): an adaptation of the
relative weight comparison algorithm [6] that uses a pair of
TSPs and a weightw (e.g. xi > w × x j).

To more effectively perform local modifications of the tree structure
and tests when applying genetic operators, additional information
about training instances and related statistics are stored. Addition-
ally, EvoHDTree keeps an embedded ranking of genes passed as
an input of the algorithm. It contains the gene name and its cost C ,
which corresponds to the discrimination power ranking generated
manually or by some feature ranking algorithm. This cost is later
used in the fitness function and in the mutation operator so the
top-genes from the ranking are more likely to be considered. The
gene rank (cost) ranges from 0.5 to 1, while 0.5 corresponds to the
highest-ranked gene and 1 to the worst-ranked gene.

3.2 Initialization
Initial individuals are created by using a top-down algorithm with
random subsamples of the original training data. This helps to
maintain a balance between exploration and exploitation. At each
EvoHDTree internal node, the algorithm divides the training in-
stances that reach this particular point by one of the three tests
(equal probability of selecting univariate, TSP-like or Weight TSP-
like test) built on a random attribute (or attributes). The reason why
we add the suffix like to TSP and Weight TSP is that the original
ranking that is based on classification error can only be used in a

Figure 2: Example representation of EvoHDTree.

948

GECCO ’21, July 10–14, 2021, Lille, France Czajkowski, M., Jurczuk, K., Kretowski, M.

input : instances that reach the node (matrix N ×M)
input :r smoothness factor of the weight (w) relation
output :Top weight TSP-like test based on Gini impurity

1 for i ← 1 toM do // i,j are the attributes
2 for j ← 1 toM ; i! = j do
3 for u ← 1 to N do
4 w = round(xiu/x ju , r) // where x ju!=0

5 BL ←− ∅; // left branch

6 BR ←− ∅; // right branch

7 for v ← 1 to N do
8 if xiv < w ∗ x jv then
9 BL ←− Xv ;

10 else
11 BR ←− Xv ;
12 end
13 end
14 /* R1 primary & R2 secondary ranking */

15 R1 = GiniImpurity(BL) +GiniImpurity(BR);
16 R2 = abs(w − xiu/x ju);
17 /* store i ′,j ′,w ′,R′1,R

′
2 for min(R1&R2) */

18 end
19 end
20 end
21 return i ′, j ′,w ′, R′1, R

′
2

Algorithm 1: Weight TSP-like test search

binary classification problem. Therefore, all test variants at non-
terminal nodes are scored according to the Gini Impurity [6], which
is a well-known partitioning criterion for DT.

Alдorithm 1 describes how a Weight TSP-like test is generated.
Of the three tests, this is the most advanced and computationally
intensive test because its overall complexity is O((M ∗ N)2), where
M is the number of attributes and N is the number of instances. The
remaining tests are simplified versions of Alдorithm 1 because, for
(i) the TSP-like test, the weight ofw always equals to 1, so iteration
through u is not required; (ii) the univariate test involves a single
attribute, so only two nested loops are required. The secondary
ranking R2 is the tie-breaker and is equal to the absolute difference
between the smoothed weight value and the actual value.

3.3 Genetic operators
Using the solution representation as the solution itself often re-
quires the design of specialized genetic operators, which is the
case in the proposed EvoHDTree heterogeneous tree-encoding
schema. To preserve genetic diversity, two specialized genetic meta-
operators corresponding to classical mutation and crossover are
proposed. The operators can have a three-level effect on individuals
as they can impact the structure of the decision tree, the represen-
tation of nodes, and the split test itself.

The mutation operator starts by randomly selecting a node type
(non-terminal node or leaf). A ranked list of nodes of the selected
type is then created and a mechanism analogous to ranking selec-
tion is used to decide which node will be affected by the mutation.

Figure 3:Mutations variants for EvoHDTree alongwith their
relative probabilities of occurrence.

Two aspects are considered to determine which node is more likely
to be selected:
• the position (location) of the tree node. It is preferable to
modify nodes in the lower parts of the tree more frequently
since such a change has only a local impact. It is clear that
modifying the root or internal nodes in the upper parts of
the tree affects the entire DT;
• tree node quality, since nodes with higher error per instance
should be mutated with higher probability.

A list of possible mutation variants is shown in Figure 3. Some of the
variants are unique to the split type (representation), e.g., shifting
the threshold value of a univariate test; changing the relation of a
TSP-like test; or modifying the fractional relationship in a Weight
TSP-like test. Others affect the split representation or modify two
nodes simultaneously. There are also variants of operators that act
as a pruning procedure (internal or straight to the leaf). Finally,
there are variants that look for new tests, some even check all three
split representations and choose the best one.

The crossover procedure starts with the random selection of two
individuals to interact with and the selection of positions (nodes)
in both individuals. Three variants of the crossover are used on
randomly selected nodes and involve the simple exchange of tests,
branches, and subtrees (see Figure 4). The two variants shown in
Figure 5 require an additional mechanism to decide which node will
be affected - analogous to the mutation variants. The probability
of using each variant is equal. The algorithm ranks all tree nodes
in both individuals according to their classification accuracy and
the probability of selection is proportional to the rank in a linear
manner. Nodes, for example, with a low classification error, aremore
likely to be donors, while weak nodes (with high classification error)
are more likely to be replaced by donors (and become a recipient).
We also allow recipient nodes to be replaced by a subtree that
starts at the donor node of the best individual. Note that only one
individual is affected in such recombination.

3.4 Fitness and selection
Decision trees are prone to overfitting, especially when the tree
is particularly large [7]. In typical greedy induction, this problem
is partially mitigated by the post-pruning procedure. In the case
of evolutionary induced DT, this problem can be controlled by a

949

Accelerated Evolutionary Heterogeneous DT for Gene Expression-Based Classification GECCO ’21, July 10–14, 2021, Lille, France

exchange

U1

U2

U3 U4

W1

W2

Individual U Individual W

A

C A

A

B B

B

C

subtrees

branches

tests

crossover

Figure 4: EvoHDTree exchange crossover variants: swap
tests, branches and subtrees.

asymmetric
U1

U2

U3 U4

W1

W2

Individual U Individual W

A

C A

A

B B

B

C

receiver

donor receiver donor

donor

receiver

two-ways

one-way (with the best individual)

crossover

Figure 5: EvoHDTree asymmetric crossover variants: two-
way exchange and one-way with the best individual.

multi-objective fitness function to maximize accuracy and minimize
the complexity of the output tree. In this paper, a modified weight
fitness function proposed by the GDT system is used:

Fitness(T) = Accuracy(T) − α ∗Complexity(T), (1)

where Accuracy(T) represents the classification quality of the tree
T estimated on the learning set, Complexity(T) which reflects the
total cost of attributes that constitute tests at non-terminal nodes
along with the number of instances that reach that node. Let HT
denotes the number of internal nodes of the tree T and Hi be an
i-th internal node with |Xi | instances, then:

Complexity(T) =
HT∑
i=1
(
|X |

|Xi |
∗C(Hi)), (2)

whereC(Hi) is the cost of the attributes that make up node Hi . The
reason why the total cost of a node increases when the number
of instances in a node decreases (|X |

|Xi |
) is to avoid the overfitting

in the lower parts of the hierarchy, as this will further reduce the
induction of overgrown trees.

The selection mechanism is based on the linear ranking selec-
tion [20]. Additionally, at each iteration, the one individual with
the highest fitness in the current population is copied to the next
population (elitist strategy). The evolution ends when the fitness
of the best individual in the population does not improve within
a fixed number of generations or when the maximum number of
generations is reached.

4 ACCELERATING EVOHDTREE
Applying the typical parallel data-decomposition technique in the
context of biomedical data, where the number of instances is low,
may not be efficient [15]. Therefore the EvoHDTree is accelerated
using a hybrid approach with a shared address space paradigm
(OpenMP) and GPU-based parallelization (see Figure 6). Individuals
from the population are spread over the CPU cores using OpenMP
threads. For the assigned pool of individuals, each OpenMP thread
is responsible for the crossover, mutation, and evaluation algorithm
blocks.

Parallelization on the GPU is applied differently. When the mu-
tation operator updates or computes a new splitting note, the local
search for the test is parallelized. Each thread on the device is as-
signed an equal number of relations (called offset) to compute so
that it ‘knows’ which relations of genes it should analyze and where
it should store the result. Finding a univariate split is less computa-
tionally demanding than finding an RXA gene pair. Therefore in
TSP and Weight TSP-like tests, the first attribute is pre-selected by
the CPU and, along with the offset and indexes of the instances
that reached the mutated node, is sent to the GPU. After all the
threads of the block have been completed, the best results from
each thread are copied from GPU device memory back to the CPU
main memory. Simplified ranking linear selection is used to select
the best test that will constitute the split in the mutated node.

5 EXPERIMENTS
In this section, we experimentally validate the proposed EvoHDTree
approach and confront its results with popular counterparts.

5.1 Setup
All experiments were performed on cancer-related gene expression-
based datasets deposited in NCBI’s Gene Expression Omnibus
[4] and summarized in Table 1. Typical 10-fold stratified cross-
validation was used (although the datasets are well balanced) and
the average accuracy score with standard deviation from 20 runs is
presented.

For performance reasons regarding other approaches, Relief-F
feature selection was used and the number of selected genes was
arbitrarily limited to the top 1000. Experiments were conducted
on a workstation equipped with an Intel Core i5-8400 CPU, 32 GB
RAM, and NVIDIA GeForce GTX 1080 GPU card (8 GB memory, 2
560 CUDA cores). The sequential algorithm was implemented in
C++ and the GPU-based parallelization part was implemented in
CUDA-C (compiled by nvcc CUDA 10; single-precision arithmetic
used)

Table 1: Summary of gene expression datasets: abbreviation
with name, number of genes and number of samples.

Datasets Genes Samples Datasets Genes Samples
GDS2771 22215 192 GSE10072 22284 107
GSE17920 54676 130 GSE19804 54613 120
GSE25837 18631 93 GSE27272 24526 183
GSE3365 22284 127 GSE6613 22284 105

950

GECCO ’21, July 10–14, 2021, Lille, France Czajkowski, M., Jurczuk, K., Kretowski, M.

Figure 6: General flowchart of accelerated EvoHDTree approach.

To make a proper comparison, we contrasted the proposed Evo-
HDTree solution with popular RXA algorithms:
• TSP, TSN, and k-TSP: tests performed using AUERA software
[9];
• EvoTSP and REDT results were taken from the publication
because we use the same datasets [6] and preprocessing
procedure.

To check the impact of the proposed heterogeneous representation,
we tested different EvoHDTree configurations:

(1) EU - EvoHDTree with tree nodes using only univariate tests;
(2) ET - EvoHDTree with tree nodes using only TSP tests
(3) EW - EvoHDTree with tree nodes using Weight TSP tests

(similar to REDT)
.

Since EvoHDTree is a typical generational EA, parameters such
as population size, the maximum number of generations, elitism
rate, crossover and mutation probability must be selected before
evolution. Table 2 gives a brief summary of the main parameters
that were used, however further research is required to tune these
settings.

In addition to the typical evolutionary parameters, the Evo-
HDTree algorithm requires a α setting to control the complexity
term. We used α = 0.1, which is supported by our previous studies.

5.2 Results
The experimental accuracy results are quite predictable (see Figure
7). All evolutionary approaches outperform the sequential RXA
solutions due to the more complex representation - vertical as

in EvoTSP and horizontal (decision tree) otherwise. It can also be
observed that the largest differences between the tested EvoHDTree
variants occur when only univariate splits are used. The lower
accuracy for the EU tree was expected since without RXA nodes the
tree is a typical globally induced DT. The improvement in accuracy
by inducing a tree with heterogeneous representation is small but
consistent and noticeable.

Analysis of the results using the Friedman test showed that there
are statistically significant differences between the algorithms (sig-
nificance level is equal to 0.05) in terms of accuracy. According to
Dunn’s multiple comparison test EvoHDTree together with REDT
managed to significantly outperform all traditional RXA solutions:
TSP, TSN, and on some datasets EvoTSP. We believe this is a good
result, especially considering that Dunn’s test is the most conser-
vative option (less likely to find a significant difference) among all
multiple comparison procedures [8].

However, the real improvement is evident when we analyze Ta-
ble 3. We see that the proposed heterogeneous tree with univariate

Table 2: EvoHDTree default parameters

Basic EA parameters
Population size: 64 individuals
Elitism rate: 1% of the population
Max generations: 1000
Mutation rate: 90% assigned to the individual
Crossover rate: 10% assigned to the individual

951

Accelerated Evolutionary Heterogeneous DT for Gene Expression-Based Classification GECCO ’21, July 10–14, 2021, Lille, France

GDS2771 GSE17920

GSE25837 GSE3365

GSE10072 GSE19804

GSE27272
GSE6613

Figure 7: Boxplots of accuracy scores; the dotted line is the
mean and the straight line is the median.

and RXA splitting nodes (denoted in the table as EH) induces sig-
nificantly smaller trees than the competing REDT and other tree
variants (* the same statistical assumptions as for testing accuracy).
The vast majority of the induced EvoHDTrees contained two or
three types of node representation, which may suggest that the
founded rules and patterns are more precise.

Speeding up the proposed solution was also one of our priorities.
The experimental analysis showed that the most time-consuming
part of the algorithm is the local search for tests in internal node
splits, which corresponds to more than 97% of evolutionary loop
time (the remaining 2.5% is CPU calculation and 0.5% is data transfer
and memory allocation related to GPU parallelization). This is not
surprising, because:
• the most time-consuming CPU task for evolutionary induced
DT (without local search components) is usually the fitness
calculation. Since the number of instances in the dataset
is small, this operation is relatively fast compared to the

Table 3: Number of genes involved in the tree model, *pro-
posed EvoHDTree is denoted here as EH.

Datasets k-TSP EvoTSP REDT EH* EU ET EW
GDS2771 10 4.0 8.2 4.5 3.1 6.6 6.1
GSE17920 6 2.1 2.2 1.2 1.0 2.1 2.1
GSE25837 10 2.8 7.3 3.9 3.0 6.2 5.0
GSE3365 10 2.1 2.8 1.1 1.0 2.0 2.1
GSE10072 14 3.1 6.0 5.0 2.9 6.0 6.1
GSE198040 18 2.7 7.9 4.5 3.7 7.0 6.2
GSE27272 14 4.1 3.9 2.9 2.2 4.3 4.0
GSE6613 10 6.1 8.4 6.8 4.4 9.8 8.9
Average 11.5 3.4 5.8 3.7 2.7 5.5 5.0

Table 4: Average time in seconds of a single test search opera-
tor calculated on the CPU/GPU (blocks x threads). Tests per-
formed in the root node (with all 192 instances) on dataset
GDS2771 with 1000 and 22215 attributes.

GDS27711000 GDS2771f ull
Test CPU GPU16x32 GPU16x32 GPU32x256
top uni. 12.5 0.033 0.93 0.088
TSP 0.075 0 0.006 0
Weight TSP 14.6 0.037 1.02 0.091
Best 28.88 0.069 1.937 0.177

calculation of local search components performed on GPU.
The proposed OpenMP parallelization, which used 6 cores,
managed to speed up the GPU calculations by about 2.5×.
However, for assigned population size such parallelization
has a small impact on the overall algorithm execution time;
• memory allocation and data transfer time are also almost
imperceptible, as only instance indexes together with results
are sent between CPU and GPU during the evolutionary
loop.

The most computationally intensive task is to compute the tests
in the split. The number of base arithmetic operations is directly
related to the test type and the number of instances that reach the
node. Table 4 shows how GPU acceleration improves each type
of split on the GDS2771 dataset. To simplify the presentation of
the calculations, we show the computation times only for the root
node (so the number of instances is constant and equal to 192).
Since the decomposition strategy on GPU is implemented through
parallelization of the attributes, the number of blocks × threads
must not exceed their total value. As the potential of paralleliza-
tion on GPU has not been fully exploited (GDS27711000 has only
1000 attributes), we also include results for the full dataset with
22215 attributes (only on GPU, since CPU takes too much time).
On average, the speedup at the root node for GDS27711000 is ap-
proximately 400× when using the GPU (16 blocks × 32 threads).
The actual speedup for the entire DT is twice smaller because there
are fewer instances in the lower parts of the tree, which affects
GPU performance. However, for a larger dataset (higher number of
instances and attributes), the speedup may be even higher because
more threads can be used, as is the case for GDS2771f ull dataset.

952

GECCO ’21, July 10–14, 2021, Lille, France Czajkowski, M., Jurczuk, K., Kretowski, M.

Figure 8: Four possible relations between two genes X1 and
X2 in control and cancer sample.

6 DISCUSSION
The detected gene-gene interactions strongly depend on the type
and capabilities of the algorithm used in the analysis. When the
classifier representation is inadequate, the true relation is found
either partially or with additional uninformative genes that hinder
the understanding and interpretation of the output model. In most
cases, such a flaw becomes apparent through the increased size of
the generated model rather than lower accuracy. It is well demon-
strated in other problems, such as when comparing trees induced
by the greedy techniques with ones induced by EA [17].

Suppose hypothetically that the two genes x1 and x2 have con-
stant expression values among instances from the same classes.
Figure 8 shows four simple scenarios (A), (B), (C), (D) of possible
relationships between these two genes in the control and cancer
class:
• Variant A: the ordering relationship between x1 and x2 in
control and cancer class is reversed, and the weight change
w is large. All RXA solutions will choose this pair. The pair
is significant;
• Variant B: the ordering relation is reversed, but the weight
changew between classes is low. The TSP-like solutions will
select this pair, but the Weight TSP algorithm may ignore
this pair. The pair is insignificant due to the small change in
expression level;
• Variant C: the ordering relation is not reversed, but the
weight change w is large. The TSP-like solutions will not
select this pair but the Weight TSP algorithm may. The pair
is significant because of the large change in expression level;
• Variant D: the ordering relation is reversed and the weight
change w is large. All RXA-like solutions will choose this
pair. The pair is irrelevant because only gene x1 is relevant
and should be selected.

Among all available RXA solutions, only EvoHDTree managed to
properly selects (A) and (C) variants and ignored (A) and (D). The
importance of destructive impact on the use of non-informative
genes in RXA classification models is exhaustively explored in [27].
Finally, it should also be noted that with hierarchical tree structure

{ TSP2, TSP3, TSP5}

TSP2

TSP3

TSP5
TSP5

TSP3

A

A

A A

B

B B

B

 k-TSP (k=3)

 (x2> x3> x5)

A B

TSN (N=3)

A

B

 (x2> x3)

 (x3> x5)

B

~~

~~

Figure 9: An example of k-TSP and TSN splits and its hierar-
chical TSP equivalent.

EvoHDTree can theoretically mimic more complex RXA tests like
k-TSP and TSN as illustrated in Figure 9. Inducing such a tree is
possible, but it is rather unlikely in a real-world scenario.

Due to the paper length we only mention that by decoding gene
names with GPL96 platform, we examined the rules generated by
the EvoHDTree and their biological relevance for the GDS2771
dataset available in NCBI’s GenBank [3]. We found that on average,
30% of the genes used in our model were directly related to lung
cancer, and other 30-40% were discussed in several papers in the
medical literature. For example, the most popular gene used in Evo-
HDTree models for GDS2771 dataset was the HBA1 gene (attribute
id: 211699). The literature suggests [24] that it has an impact on the
survival of lung cancer patients with diabetes mellitus. However,
further work is planned with biologists to better understand the
gene-gene relationships generated by EvoHDTree.

7 CONCLUSION
This paper introduces a heterogeneous DT with flexible node rep-
resentation that to some extent can self-adapt to the currently
analyzed data. The EvoHDTree algorithm searches globally for
the best DT structure, node representation, and splits using a spe-
cialized EA. EvoHDTree is able to seek various patterns based on
gene-gene interactions along with their raw values. With a parallel
implementation including OpenMP and GPU, we can efficiently
explore much larger datasets, which is especially important for
computationally intensive RXA. The performed experiments show
that the proposed solution generates significantly smaller and thus
simpler rules with at least similar (if not better) accuracy. We see
many promising directions for future research. In particular, we
want to adapt EvoHDTree to work with proteomic, metabolomic,
and integrated multi-omics data.

8 ACKNOWLEDGMENTS
This project was funded by the Polish National Science Centre and
allocated on the basis of decision 2019/33/B/ST6/02386 (first author).
The second and third author were supported by the grant WZ/WI-
IIT/3/2020 from BUT founded by Polish Ministry of Science and
Higher Education

REFERENCES
[1] Rodrigo Coelho Barros, Márcio Porto Basgalupp, André C.P.L.F. De Carvalho,

and Alex A. Freitas. 2012. A survey of evolutionary algorithms for decision-tree

953

Accelerated Evolutionary Heterogeneous DT for Gene Expression-Based Classification GECCO ’21, July 10–14, 2021, Lille, France

induction. IEEE Transactions on Systems, Man and Cybernetics Part C: Applications
and Reviews 42, 3 (2012), 291–312. https://doi.org/10.1109/TSMCC.2011.2157494
arXiv:1202.1112

[2] Rodrigo C. Barros, Márcio P. Basgalupp, Aléx A. Freitas, and Andre C.P.L.F.
De Carvalho. 2014. Evolutionary design of decision-tree algorithms tailored
to microarray gene expression data sets. IEEE Transactions on Evolutionary
Computation (2014). https://doi.org/10.1109/TEVC.2013.2291813

[3] Dennis A. Benson, Mark Cavanaugh, Karen Clark, Ilene Karsch-Mizrachi, James
Ostell, Kim D. Pruitt, and Eric W. Sayers. 2018. GenBank. Nucleic Acids Research
(2018). https://doi.org/10.1093/nar/gkx1094 arXiv:1611.06654

[4] Emily Clough and Tanya Barrett. 2016. The Gene Expression Omnibus database.
In Methods in Molecular Biology. https://doi.org/10.1007/978-1-4939-3578-9_5

[5] Marcin Czajkowski, Marek Grześ, and Marek Kretowski. 2014. Multi-test decision
tree and its application to microarray data classification. Artificial Intelligence in
Medicine 61, 1 (2014), 35–44. https://doi.org/10.1016/j.artmed.2014.01.005

[6] Marcin Czajkowski, Krzysztof Jurczuk, and Marek Kretowski. 2020. Generic
Relative Relations in Hierarchical Gene Expression Data Classification. In Parallel
Problem Solving from Nature – PPSN XVI, Thomas Bäck, Mike Preuss, André
Deutz, Hao Wang, Carola Doerr, Michael Emmerich, and Heike Trautmann (Eds.).
Springer International Publishing, Cham, 372–384.

[7] Marcin Czajkowski and Marek Kretowski. 2019. Decision tree underfitting in
mining of gene expression data. An evolutionary multi-test tree approach. Expert
Systems with Applications 137 (2019), 392–404. https://doi.org/10.1016/j.eswa.
2019.07.019

[8] Janez Demsar. 2006. Statistical Comparisons of Classifiers over Multiple Data
Sets. Journal of Machine Learning Research 7 (2006). https://doi.org/10.1016/j.
jecp.2010.03.005 arXiv:arXiv:1011.1669v3

[9] John C. Earls, James A. Eddy, Cory C. Funk, Younhee Ko, Andrew T. Magis, and
Nathan D. Price. 2013. AUREA: An open-source software system for accurate
and user-friendly identification of relative expression molecular signatures. BMC
Bioinformatics (2013). https://doi.org/10.1186/1471-2105-14-78

[10] James A. Eddy, Jaeyun Sung, Donald Geman, and Nathan D. Price. 2010. Relative
expression analysis for molecular cancer diagnosis and prognosis. https://doi.
org/10.1177/153303461000900204

[11] Donald Geman, Christian D’Avignon, Daniel Q. Naiman, and Raimond L.Winslow.
2004. Classifying Gene Expression Profiles from Pairwise mRNA Comparisons.
Statistical Applications in Genetics and Molecular Biology (2004). https://doi.org/
10.2202/1544-6115.1071 arXiv:NIHMS150003

[12] Yue-Jiao Gong, Wei-Neng Chen, Zhi-Hui Zhan, Jun Zhang, Yun Li, Qingfu Zhang,
and Jing-Jing Li. 2015. Distributed evolutionary algorithms and their models:
A survey of the state-of-the-art. Applied Soft Computing 34 (2015), 286–300.
https://doi.org/10.1016/j.asoc.2015.04.061

[13] Xin Huang, Xiaohui Lin, Lina Zhou, and Benzhe Su. 2018. Analyzing omics data
by pair-wise feature evaluation with horizontal and vertical comparisons. Journal
of Pharmaceutical and Biomedical Analysis (2018). https://doi.org/10.1016/j.jpba.
2018.04.052

[14] Laurent Hyafil and Ronald L. Rivest. 1976. Constructing optimal binary decision
trees is NP-complete. Inform. Process. Lett. 5, 1 (1976), 15–17. https://doi.org/10.
1016/0020-0190(76)90095-8

[15] Krzysztof Jurczuk, Marcin Czajkowski, and Marek Kretowski. 2021. Multi-
GPU approach to global induction of classification trees for large-scale data
mining. Applied Intelligence 137 (2021), 392–404. https://doi.org/10.1007/
s10489-020-01952-5

[16] S. B. Kotsiantis. 2013. Decision trees: A recent overview. Artificial Intelligence
Review 39, 4 (2013), 261–283. https://doi.org/10.1007/s10462-011-9272-4

[17] Marek Kretowski. 2019. Parallel Computations for Evolutionary Induction. Springer
International Publishing, Cham. https://doi.org/10.1007/978-3-030-21851-5_8

[18] Win Tsung Lo, Yue Shan Chang, Ruey Kai Sheu, Chun Chieh Chiu, and
Shyan Ming Yuan. 2014. CUDT: A CUDA based decision tree algorithm. Scientific
World Journal (2014). https://doi.org/10.1155/2014/745640

[19] Andrew T. Magis and Nathan D. Price. 2012. The top-scoring ’N’ algo-
rithm: a generalized relative expression classification method from small num-
bers of biomolecules. BMC Bioinformatics (2012). https://doi.org/10.1186/
1471-2105-13-227

[20] Zbigniew Michalewicz. 1996. Genetic algorithms + data structures = evolution
programs (3rd ed.). https://doi.org/10.2307/2669583

[21] J. R. Quinlan. 1992. LearningWith Continuous Classes. World Scientific, 343–348.
[22] Nimrod Rappoport and Ron Shamir. 2018. Multi-omic and multi-view clustering

algorithms: review and cancer benchmark. Nucleic Acids Research 46, 20 (10 2018),
10546–10562. https://doi.org/10.1093/nar/gky889

[23] L Rokach and O Maimon. 2005. Top-down Induction of Decision Trees Classifiers
- a Survey. Trans. Sys. Man Cyber Part C 35, 4 (2005), 476–487.

[24] Katie E. Rollins, Krishna K. Varadhan, Ketan Dhatariya, and Dileep N. Lobo. 2016.
Systematic review of the impact of HbA1c on outcomes following surgery in
patients with diabetes mellitus. https://doi.org/10.1016/j.clnu.2015.03.007

[25] Aik Choon Tan, Daniel Q. Naiman, Lei Xu, Raimond L. Winslow, and Donald
Geman. 2005. Simple decision rules for classifying human cancers from gene
expression profiles. Bioinformatics (2005). https://doi.org/10.1093/bioinformatics/

bti631
[26] Giulia Vilone and Luca Longo. 2020. Explainable Artificial Intelligence: a Sys-

tematic Review. arXiv:cs.AI/2006.00093
[27] Kaimin Wu, Xiaofei Nan, Yumei Chai, Liming Wang, and Kun Li. 2016. DTSP-V:

A trend-based Top Scoring Pairs method for classification of time series gene
expression data. In 2016 IEEE International Conference on Bioinformatics and
Biomedicine (BIBM). 1787–1794. https://doi.org/10.1109/BIBM.2016.7822790

954

https://doi.org/10.1109/TSMCC.2011.2157494
http://arxiv.org/abs/1202.1112
https://doi.org/10.1109/TEVC.2013.2291813
https://doi.org/10.1093/nar/gkx1094
http://arxiv.org/abs/1611.06654
https://doi.org/10.1007/978-1-4939-3578-9_5
https://doi.org/10.1016/j.artmed.2014.01.005
https://doi.org/10.1016/j.eswa.2019.07.019
https://doi.org/10.1016/j.eswa.2019.07.019
https://doi.org/10.1016/j.jecp.2010.03.005
https://doi.org/10.1016/j.jecp.2010.03.005
http://arxiv.org/abs/arXiv:1011.1669v3
https://doi.org/10.1186/1471-2105-14-78
https://doi.org/10.1177/153303461000900204
https://doi.org/10.1177/153303461000900204
https://doi.org/10.2202/1544-6115.1071
https://doi.org/10.2202/1544-6115.1071
http://arxiv.org/abs/NIHMS150003
https://doi.org/10.1016/j.asoc.2015.04.061
https://doi.org/10.1016/j.jpba.2018.04.052
https://doi.org/10.1016/j.jpba.2018.04.052
https://doi.org/10.1016/0020-0190(76)90095-8
https://doi.org/10.1016/0020-0190(76)90095-8
https://doi.org/10.1007/s10489-020-01952-5
https://doi.org/10.1007/s10489-020-01952-5
https://doi.org/10.1007/s10462-011-9272-4
https://doi.org/10.1007/978-3-030-21851-5_8
https://doi.org/10.1155/2014/745640
https://doi.org/10.1186/1471-2105-13-227
https://doi.org/10.1186/1471-2105-13-227
https://doi.org/10.2307/2669583
https://doi.org/10.1093/nar/gky889
https://doi.org/10.1016/j.clnu.2015.03.007
https://doi.org/10.1093/bioinformatics/bti631
https://doi.org/10.1093/bioinformatics/bti631
http://arxiv.org/abs/cs.AI/2006.00093
https://doi.org/10.1109/BIBM.2016.7822790

	Abstract
	1 Introduction
	2 Related work
	2.1 Decision trees
	2.2 RXA-based classifiers
	2.3 Parallelization

	3 EvoHDTree
	3.1 Representation
	3.2 Initialization
	3.3 Genetic operators
	3.4 Fitness and selection

	4 Accelerating EvoHDTree
	5 EXPERIMENTS
	5.1 Setup
	5.2 Results

	6 Discussion
	7 Conclusion
	8 Acknowledgments
	References

