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A B S T R A C T

Current advances in high-throughput and imaging technologies are paving the way next-

generation healthcare, tailored to the clinical and molecular characteristics of each patient.

The Big Data obtained from these technologies are of little value to society unless it can be

analyzed, interpreted, and applied in a relatively customized and inexpensive way. We pro-

pose a flexible decision support system called IntelliOmics for multi-omics data analysis

constituted with well-designed and maintained components with open license for both

personal and commercial use. Our proposition aims to serve some insight how to build

your own local end-to-end service towards personalized medicine: from raw data upload,

intelligent integration and exploration to detailed analysis accompanying clinical medical

reports.

The high-throughput data is effectively collected and processed in a parallel and dis-

tributed manner using the Hadoop framework and user-defined scripts. Heterogeneous

data transformation performed mainly on the Apache Hive is then integrated into a so

called ‘knowledge base’. On its basis, manual analysis in the form of hierarchical rules

can be performed as well as automatic data analysis with Apache Spark and machine

learning library MLlib. Finally, diagnostic and prognostic tools, charts, tables, statistical

tests and print-ready clinical reports for an individual or group of patients are provided.

The experimental evaluation was performed as part of the clinical decision support for tar-

geted therapy in non-small cell lung cancer. The system managed to successfully process

over a hundred of multi-omic patient data and offers various functionalities for different

types of users: researchers, bio-statisticians/bioinformaticians, clinicians and medical

board.
� 2021 Nalecz Institute of Biocybernetics and Biomedical Engineering of the Polish Academy

of Sciences. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Life science is becoming increasingly collaborative and com-

plex. Scientists use continuously emerging and diverse tech-

nologies to better understand organisms and diseases from

a molecular to the system level. Researchers need to explore

heterogeneous data obtained from multiple sources to con-

duct meaningful analyses and extract actionable knowledge.

In recent years, an increase in data size and availability has

been particularly dramatic due to the ’omics’ technologies.

The term Big Data [1] is often used in such cases, which refers

to high volume, high velocity, and/or high variety information

assets. In the context of bio-medicine, we also face various

data representations, high-dimensionality, and incomplete-

ness or imprecision of observations. Recent advances in the

interdisciplinary fields of precision medicine, data mining

and predictive algorithms, bioinformatics, and computational

medicine are remarkable [2,3]. Nonetheless, there is a widen-

ing gap between data acquisition (due to the rapid technolog-

ical progress) and the comparatively slow functional

characterization of biomedical information. In this regard,

new ideas of improving the general access to efficient molec-

ular information management, integration, analysis, and

interpretation are becoming crucial.

One of the important applications of precision medicine is

clinical oncology, as the exact mechanisms of carcinogenesis

in its prognosis are often unclear. Multi-omics technologies

are being widely used to systematically understand the for-

mation of cancer on different biological levels by focusing

on multi-parameters systematical models [4]. Cancer is a

complex, whole-body disease and involves multiple abnor-

malities in the levels of DNA, RNA, and other molecules

including proteins. The most commonly used data types that

compose multi-omics models [5] are:

� genomics – to identify the nucleotide variants (SNPs – sin-

gle nucleotide polymorphisms) in the whole genome asso-

ciated with clinical traits (GWAS – genome-wide

association study); technology/platform: genotyping

arrays and whole-exome sequencing;

� transcriptomics – to quantify the expression levels of cel-

lular transcripts (e.g. mRNA); technology/platform: expres-

sion arrays, RNA sequencing;

� proteomics - to characterize the protein expression levels

of cells/samples; technology/platform: mass spectrometry

(MS) -based approaches;

� metabolomics – to characterize the abundance profile of

metabolites and their relative ratios; technology/platform:

alike in proteomics;

� radioomics - to quantify the features of medical imaging;

technology/platform: CT, MRI, PET;

� others like epigenomics, microbiomics, exposomics, etc.

Multi-omics data and technologies have a wide-range of

applications in both basic research and clinical treatment of
cancer [6]. The term ‘‘cancer genomics” [7] refers to the study

of tumorgenome. Its goal is to surveymulti-omicsdata to iden-

tify genes and pathways deregulated in cancer, and reveal

those thatmaybeusedas the early stage biomarkers of thedis-

easeandhelpunderstand thepathogenesisof cancer. Suchdis-

coveries improve our understanding of the biology of cancer

and may lead to the discovery of novel diagnostic, prognostic,

and therapeutic biomarkers that will ultimately improve dis-

ease detection and treatment. Cancer genomics are rapidly

evolving and coupled with the ever-increasing efficiency of

genomicprofiling.This leads to the fact thatpersonalizedmed-

icine is likely to become the reality soon. It is expected that in

the near future oncological patients will be profiled in a timely

manner, and that the multi-omics findings will subsequently

be introduced into clinical practices.

Several bottlenecks slow-down the transition from con-

ventional to personalized medicine [8]. Efforts to integrate

heterogeneous big data, including data coming from the

multi-omics technologies (such as molecular and protein sig-

natures, individual genome sequences, patients’ clinical phe-

notypes, images and follow-up data) is a tough task [9]. Most

omics data are only qualitative in nature, making it very hard

to reproduce and even harder to compare. The lack of suffi-

cient meta-data is also a roadblock to the successful integra-

tion of multi-omics data sets. Often very little effort goes into

collecting the meta-data about the samples or patients. To

enable reproducibility and biologically relevant interpretation

of omics results the information about the observable pheno-

types of the samples should also be collected.

Currently existing digitized data and clinical information

are present in multiple formats and are largely unstructured.

In the absence of a universally accepted standards, institu-

tions continue to generate silos of information [10] in various

formats and store them in heterogeneous databases. Simi-

larly, it is common for bioinformatic programs to require

input data in non-standardized formats and output results

data in a format that is incompatible with other programs.

This can make it difficult to create a multi-program or a

multi-database workflow and may require users to spend

their time writing scripts to convert and reconvert data so

that it can be read by other programs.

Many of the specific analytical tools and experimental

designs traditionally used for individual omics disciplines

(e.g., genomics, transcriptomics, and proteomics) are not suf-

ficiently well-suited to permit proper comparisons or intelli-

gent integration [11]. Often, other types of data like

advanced clinical or imaging are not exploited or embedded

in the systems. Nonetheless, there might exist many well

designed and maintained software tools that are often una-

ware of by the researchers. This problem may be due to the

sheer number of resources or the lack of a central repository

which catalogs, links and rates or summarizes these tools

according to e.g. their functionalities, limitations and diffi-

culty of using. Treating every problem with the same tool

may be partly caused by the low user-friendliness of many

currently available multi-omics programs.
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Finally, multi-omics commercial products are expensive

and require a considerable level of funding for the software

maintenance. Therefore, local research projects and medical

centers seek for a software with the free license to cut the

costs. The vast majority of such solutions offer narrowly tar-

geted products that are addressed to research, rather than to

hospital centers, thus no real medical decision support can be

proposed [11]. There is a strong demand for systems designed

and implemented in close cooperation with medical centres.

The most of currently available systems and tools are not

accessible by physicians or researchers without significant

training in data science [4]. Usability and specificity of the

solutions for a particular problem are often overlooked, which

strongly affects the everyday use of the existing systems in

the clinical practices. As a result, very often an invaluable

knowledge and new discoveries coming from the integrated

analyses are difficult to access [12]. It seems simply infeasible

to gather and make a proper comparison or review all existing

solutions. Therefore, in Tables 1 and 2, we only show aggre-

gated information from recent reviews concerning software

and web tools, databases, AI algorithms, projects in the con-

text of precision medicine.

Inspiration for this research is a Databricks solution [41] -

one of the largest platforms for massive-scale data engineer-

ing, machine learning and business analytics. Databricks is

build on the Apache Spark [42] which is the largest open-

source cluster computing framework and unified analytics

engine for big data processing. Multiple other open-source

components like DataLake, MLFlow and TensorFlow are con-

nected with the Databricks which wrap them up into an uni-

fied data web-based platform. The main downside is that the

solution is relatively expensive and lacks of flexibility in con-

trast to open-source components that constitute it.

Our goal was somewhat similar to the founders of Datab-

ricks as we wanted to design a web-based decision support

system, composed of available top open-source solutions,

for multi-omics data analysis. Within a few years we have

developed the intelligent solutions and services for multi-

omics data system (IntelliOmics) tailored for precision medi-

cine within the medium-scale medical project [43]. The plat-

form offers a complete and flexible approach starting from

the raw data upload to the patient (or group of patients) med-

ical reports, designed according to the specific clinicians’

needs. It is based on a client–server architecture, with compu-

tational and data storage modules deployed on the server,

and browser-based client applications [44]. In this paper we

present our way to build such a system and share guidelines

for all those who are considering creating a solution similar to

IntelliOmics.

2. Material and methods

In this paper, we present a self-contained web-based system

called IntelliOmics that allows a complete analysis starting

from the raw data (text, images, binary files), all the way to

the diagnostic reports which can be associated with the treat-

ment recommendation tailored to the clinicians needs. Fig. 1

illustrates three main components in which the system is
organized: data management, data processing, and data analysis.

Table 3 shows the main user groups, available functionalities

and interfaces within the system.

2.1. Data management

The first component required by any personalized medicine

solution is the upload and the storage of clinical and multi-

omics data from different sources. The typical system should

enable repository of the original, unprocessed data, as well as

intermediate, processed data, and the results of the analyses.

It should be emphasized that especially various omics data

demands massive amounts of computing power and space

[52]. A typical single next-generation sequencing method

can generate up to 300 GB of data. Even after data preprocess-

ing, including e.g. genome mapping, there is approximately

2–3 GB of the heterogeneous data (including report files, inter-

mediate results, potential biomarkers list, genomic structural

and functional variants saved into vcf files). Other types of

data related to the transcriptomics, proteomics, metabolites

and e.g. PET/MRI imaging are accordingly smaller but still

large for storage and processing. Therefore, structures and

technologies for both Big Data and classical data warehousing

should be applied.

As the web frameworks are crucial to app-development

[53], one needs to be very attentive and serious about select-

ing the right development framework. We have identified a

long list of requirements and constraints that must be met

and used them to build the IntelliOmics system. We have

selected Django [54], which is considered one of the best

high-level Python web framework. It is not only free and open

source, but also exceedingly scalable and reassuringly secure.

It encourages rapid development and is especially useful for

creating database-driven websites. It comes with an

advanced user authentication system that also handles speci-

fic permissions for users, groups, data etc. This way we could

easily set IntelliOmics users (or groups of users) permissions

to a part of the stored data, functionalities or interface that

they need.

IntelliOmics environment aims at safe and reliable collec-

tion, storage and intelligent processing of clinical and multi-

omics data of patients qualified to the considered groups.

The groups can be defined based on e.g., diagnosis. Staging

and the group assignment can be latter modified. Currently,

IntelliOmics accepts the data from:

� personal and clinical information (unstructured survey

data of dietary and lifestyle habits, clinical medical

records, medical examination results including e.g. com-

plete blood count, hormones, drug use and body

composition);

� results from analysis of biological materials including

blood, other liquid and tissue samples;

� PET/MRI and CT images (raw & DICOM images with

descriptions);

� whole genome sequencing (plus DNA methylation) data in

raw or already transformed formats;



T le 1 – Aggregated information from recent literature reviews on software and data in context of precision medicine.

Category Reference Content and comparisons Number of elements

Software tools Pinu, F.R., et al. [13] integrated omics, domain, functionality, type of
licence

40 m i-omics integration software tools and web
applications

de Anda-Jáuregui, et al. [14] details, features and notes, use cases 86 to s for multi-omics computational oncology
Huang, S., et al. [15] category, data type, output, methods 32 su ervised and unsupervised methods for the

multi-omics data integration
Github pages [16] open-source list of existing workflow systems 2 computational data analysis workflow

systems
Chung, R., et al. [17] OmicsSIMLA tool for simulating multi-omics data 4 types of omics data used in simulation

Zanfardino, M., et al. [18] GUI for integrated multi-omics data in
radiogenomic studies

TCGA-BRCA data collection

Web solutions Misra, B.B., et al. [19] platform, degree of user friendliness,
functionalities and availability

65 to & software for integrated –omics analysis

Subramanian, I., et al. [20] omics data supported, source repository,
availability for private data

9 m lti-omics data analysis and visualization
portals

Databases Pinu, F.R., et al. [13] integrated omics, domain, functionality, type of
license

15 da bases that aid multi-omics data integration
process

Subramanian, I., et al. [20] diseases and type of multi-omics data available 17 multi-omics data repositories
Labory, J., et al. [21] general and MD (mitochondrial) omics databases MD databases, 21 general databases

Rappoport N., et al. [22] the Cancer Genome Atlas (TCGA) datasets used in
the clustering methods

9 m thods bencharked on 10 TCGA datasets

Lee B., et al. [23] novel computational methods for the inference of
novel biological relations from the heterogeneous

multi-layered network (HMLN)

4 g ups of algorithms: matrix factorization,
ran m walk, meta-path, graph convolutional

network (GCN)

rtificial intelligence approaches Zeesjam, A., et al. [24] approaches, objectives and AI&ML reviews 32 ture and variability analysis of reviewed
appr ches, 11 real time examples of AI and ML

algorithms
Cirillo, D., et al. [25] tasks, data type, methods 9 not le biomedical applications of deep learning
Tong, L., et al. [26] survival risk analysis 4 TC A cancer datasets from UCSC Xena, each

with four -omics data
Gambardella, V., et al. [27] limitions of molecular driven threatmens in the

clinic as well as methods to overcome these
limitations

3 w s to overcome the limitations of current
nomics approach, 7 clinical trials and

corespoding molecular tools
Su, M., et al. [28] recent technological achievements in proteomics,

the key hallmarks of cancer, and unmet clinical
needs

5 pro omics toolboxes, 10 hallmarks soft cancer,
10 c cer biomarkers discovered by proteomics

Projects Patil, S., et al. [51] biobanks, localization, collaborations 9 w rldwide biobanks and their collaborative
projects

Cirillo, D., et al. [25] initiatives and research focuses 9 la e international consortia and 23 ongoing
p ulation-scale sequencing initiatives for

Personalized Medicine
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Table 2 – Aggregated information from recent medical and biological literature in context of precision medicine.

Reference Content and comparisons Experiments

Morello, G., et al. [29] demonstrating genomic, transcriptomic,
proteomic and other factors linked to ALS,
arguing for necessity of holistic approaches,

integrating mnultiple data types of omics data

37 genes linked to ALS, 32 proteins

Hou, X., et al. [30] only describing genomic (monogenic and
poligenic-GWAS), transcriptomic and

epigenomic factors related to JIA, but nothing
on integrating these data

27 SNPs related to JIA from GWAS analysis, 4
genes correlated with monogenic form of JIA

Song J., et al. [31] analysis plasma lipidome and metabolome
allows to distinguish COVID-19 patients from

healthy controls

–

Miki, D., et al. [32] GWAS for virus-related hepatocellular
carcinoma (HCC), outline for future HCC

personalized treatments

one associated SNP found in the GWAS

Rivenbark, A.G., et al. [33] review of molecular and cellular heterogeneity
of breast cancer in context of classification and

personalized treatment

5 molecular assays for breast cancer assesment
mentioned

Krzyszczyk, P., et al. [34] challenges in precision and personalized
medicine in cancer treatment: general issues in

cancer treatment, acquiring and storage of
omics, physiological and lifestyle data, therapy
development, regulational and ethical issues

–

Frohlich, H., et al. [35] review of state-of-the-art data science
approaches for personalized medicine,

challenges, and future directions

–

Couri, T., et al. [36] Hepatocellular carcinoma therapies 9 molecular targets for HCC therapies
Zanfardino, M., et al. [37] Integration of radiomics into multi-omics

framework. R package MultiAssayExperiment
used to store multi-omics data

36 radiomic features extracted from primary
tumor images of 91 patients

Zeng, Y., et al. [38] Identification of potential biomarkers and
therapeutical targets associated with

retinoblastoma

193 differentially expressed genes, 74
differentially methylated-differentially

expressed genes, 45 differentially expressed
miRNAs and 5 differentially expressed IncRNAs

identified
Lawal B., et al. [39] cancer-associated fibroblast and immune

infiltrations based on gene expressions and
alterations

total of 56 cohorts (tumor vs normal) compared

Xie, F., et al. [40] bio-printing of primary human hepatocellular
carcinoma for personalized medicine

HCC models in vitro for 6 patients
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Fig. 1 – IntelliOmics system architecture.
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� transcriptomic data, smallRNA fraction in raw or already

transformed formats including e.g. expression levels of

specific genes;

� metabolomic and proteomic data that are generated by

mass spectrometers.

Structures and technologies for both Big Data and classical

data warehousing are applied. We decided to use a relational

PostgreSQL database to store all clinical data and the localiza-

tion in the file-system of the distributed omics data reposito-

ries. The data load module may be run at the web application

level, but a direct data transfer is also possible, especially for

WGS data.

In order to ensure the flexibility of the proposed solution

we have developed a mechanism that enables the users to

create survey forms with various types of data describing

the patient, disease and medical examination. Within the

data upload, it is possible to define the specific characteristics

of the data format. Because the IntelliOmics system is

designed to store very sensitive data, a particular attention

is focused on its confidentiality and security. Each data chunk

is linked to the unique anonymized patient’s code and time

stamp. The data can also be associated with additional

fully-customized questionnaires. They can be configured

within the interface by using additional free Django packages.
In the data management module, it is possible to define a

new workflow (set of rules, including calendar events plan-

ning and examination appointment) for an individual and a

group of patients. It is also possible to use the predefined

workflows. Medical and clinical staff can plan patient’s follow

up visits and procedures using a calendar module. Addition-

ally, system provides up-to-date detailed reports on the

acquired data and planned medical examinations and other

functionalities described in Table 3. Example screenshots of

the IntelliOmics data management interface are illustrated

in Fig. 2.
2.2. Data processing

Reliable storage and efficient processing of hundreds of ter-

abytes of data is not a trivial task [55]. Usually, storage and

processing of huge amount of data demands the use of paral-

lel and distributed tools. Currently, the most popular open

source technology that allows creating low-cost and high-

performance solutions for Big Data is the Apache Hadoop

[56] ecosystem. It refers to numerous components of the

Apache Hadoop software library and includes open source

projects as well as a complete range of complementary tools.

Some of the most well-known tools of Hadoop ecosystem

include HDFS, Hive, YARN, MapReduce, Spark, etc. Here are



Table 3 – IntelliOmics users, functionalities and interfaces.

Component User group Interfaces Functionalities Difficulty

Data management physicians, medical assistants questionnaires filling individual patient’s survey data, questionnaires,
consents etc.

low

physicians, medical assistants data storage single patient’s upload through web UI (various data-
specific interfaces)

low

physicians calendar events planning and medical examination
appointment (patient, location, study perspective)

low

physicians management view patients data low
medical staff, scientists data storage multiple patients upload through web UI and a direct

data transfer (batch)
medium

medical staff events define event types (upload specific file, fill a form,
contact etc.) that can be applied for a patient

medium

medical staff templates define a new workflow (set of rules, including calendar
events planning and examination appointment) for an

individual and a group of patients

medium

medical staff reports view up-to-date detailed reports on the acquired data
and planned medical examinations

medium

Data processing administrator warehouse monitoring manage and monitor Apache Hadoop clusters
(hardware and software)

medium

administrator snapshots designing and running snapshots of selected data type
and scheme

high

bioinformaticians workflows designing pipelines with external predefined scripts
and programs

high

bioinformaticians, scientists transformations designing and running data transformations pivoting,
normalization, cleaning, simple integration etc.

high

scientists workflows view and run data workflows, check status of data
preprocessing

medium

Data analysis bioinformaticians, scientists query editor view and test queries using SQL-like editor high
bioinformaticians, scientists knowledge editor add and manage expert knowledge in form of rules

(observations)
medium

bioinformaticians, scientists data mining manage and perform data analysis based on raw or
transformed data

high

scientists, physicians statistics, charts, tables view or export information gathered in the knowledge
base or returned by data mining module

low

physicians DICOM viewer view and mark patients imaging data through DICOM
viewer

low

physicians reports extract patients information and diagnostic results of
analysis in form of a clinical reports (in pdf)

low
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Fig. 2 – User interfaces of the data management component.
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the elements that compose IntelliOmics and also are fre-

quently used by the developers:

� HDFS (Hadoop Distributed File System) is the primary stor-

age system of Hadoop. It is a distributed file system able to

store large files running over the cluster of commodity

hardware. It employs a master (NameNode) and workers

(DataNodes) architecture;

� MapReduce is the main data processing layer of Hadoop. It

has the capability to process large structured and unstruc-

tured data as well as to manage very large data files in par-

allel by dividing the job into a set of independent tasks

(sub-jobs);

� YARN (Yet Another Resource Navigator) is one of the core

components suitable for resource management. It is

responsible for managing workloads, monitoring, and

security controls implementation. It also allocates system

resources to the various applications running in a Hadoop

cluster while assigning which tasks should be executed by

each cluster nodes;

� Hive [57] is an Extract, Transform, Load (ETL) and Data

warehousing tool used to query or analyze stored datasets.

Hive has three main functions: data summarization,

query, and analysis of unstructured and semi-structured

data in Hadoop. It features a SQL-like language (HQL) that

automatically translates queries into distributed jobs

based on MapReduce or other engines;

� Spark [42] is a distributed computing engine for in-

memory Big Data processing. Spark can be deployed in

several ways, it supports Java, Python, Scala, and R pro-

gramming languages, and provides SQL analysis, data

streaming, machine learning, and graph processing mod-

ules, which can be used together.

In context of Big Data processing, we follow the top

commercial solutions, including, Databricks, which are built
on top of Hadoop ecosystem. The second component of the

IntelliOmics (see Fig. 1), moves uploaded data into Hive as

the data warehouse software. The Hive efficiently stores

the data and performs large-scale ETL operations that

excees the capabilities of traditional relational warehouses.

Additionally, some ETL work can be also performed by

Spark [42].

Finally, the multi-omics data requires advanced process-

ing, mainly the data cleaning, QC, and the data transforma-

tion (normalization, pivoting, etc.). The system should be

open to data-specific transformations that require many

calculation-intensive steps with the use of various external,

constantly changing tools. There are hundreds of free compu-

tational data analysis workflow systems [16]. Currently, one of

the most popular bioinformatics workflow manager that

enables the development of portable and reproducible work-

flows is NextFlow [58]. It supports deploying pipelines on a

variety of execution platforms and provides support for

managing workflow is dependencies through built-in support

for Conda, Docker and Singularity.

IntelliOmics uses an alternative approach that relies on

the queue message system (RabbitMQ [59]) and on the Celery

[60] back-end to execute tasks in the background. Celery is a

simple, flexible and reliable open-source distributed system

with focus on real-time processing, while also supporting

task scheduling. It can be easily extended with various plug-

ins like Flower, which is a real-time monitor and web admin

for Celery distributed task queue. We have integrated Celery

within the pipeline module (Fig. 3)) to enable users to define

and execute workflows, that are composed of new or prede-

fined scripts and programs, that can run sequentially or in

parallel. IntelliOmics is designed to work with virtually any

analytical pipeline that can be easily incorporated into the

system. User can choose between various tools and prede-

fined guidelines and best practices [61], or create multiple

alternative workflows e.g. for the commercial and research

purposes, depending on licenses of the software. However,



Fig. 3 – A bunch of example screenshots of the workflow tasks and scheduling.
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user can easily use its own scripts, external algorithms or pre-

ferred external libraries to perform preprocessing and QC,

adequate to specificity of the data and platform used for data

acquisition. Next, he/she can monitor and manage those

tasks which can be automatically distributed and queued on

available resources.

Clinical data as well as a part of omic-data is stored in

relational a SQL database whereas whole genome sequenc-

ing (WGS) data is stored in the Hive warehouse. The data

layer is subject to version control. The system is capable

of creating a snapshot of the currently stored data for a

particular timestamp, so it is possible to reproduce the state

of the database from a specific date or period. System

administrators can manage and monitor Hadoop clusters

with the free easy-to-use management web UI called

Apache Ambari. Fig. 3 illustrates sample screenshots of

IntelliOmics pipeline.

It is important to have a flexible workflow system for the

data transformations and future analysis. Application of such

pipeline can be especially useful for high-throughput geno-

mics data where a transformation from raw files (e.g. FASTQ

file format [62]) through Binary Alignment/MAP format

(BAM) [63] to variant call format (VCF) [64] may be performed

in various ways. In the literature, we may find some of the

best practices including GATK workflows for whole genome

sequencing, RNAseq analyses and other free and open source

solutions like Gemini [65] for VCF annotation and exploration.

A lot of effort should also be put into integrating clinical and

multi-omics data [20]. Partial integration can be done auto-

matically using workflows with external tools and scripts,

however, a well designed system should allow users to create

their own rules to select and integrate the data, as discussed

in the following section.
2.3. Data analysis

Extracting useful information from the data and presenting

them in a simple, accessible way is the most crucial part of

any system for personalized medicine. Depending on the user

type, system should provide interfaces to generate charts,

statistics, reports as well as to apply data mining tools. It is

also important, to allow collecting expert’s knowledge (com-

ing from e.g. physicians’ practice, unpublished results and

public databases) that can be recognized and used by the sys-

tem. To improve the performance, computations could be sep-

arated into the client-side (charts, statistics) and the server-

side (data mining, queries and reports). It can be realized with

one ofmany available free frameworks based on the JavaScript

language (IntelliOmics uses Angular [66] with JQuery).

The IntelliOmics data analysis part (see Fig. 1) is composed

with a set of high-level interfaces to access the heterogeneous

warehouse. The collected multi-omics data can be associated

with expert’s knowledge, e.g. clinical observations concerning

a particular cancer diagnosis and treatment. It can be pro-

vided by the specialized visual editor carefully designed to

work with multi-omics schema and clinical forms. All these

elements can constitute so-called ’knowledge base’ that

allows the other groups of users (e.g. physicians) to explore

and visualize collected data, without getting to know what

is behind the user interface. In addition, embedded data-

mining module can automatically extract hidden patterns

within gathered data and generate a support for diagnostic

and therapeutic purposes in personalized medicine.

2.3.1. Knowledge base
The idea of the knowledge base in the IntelliOmics is to allow

the data and the expert’s knowledge coming from the exter-
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nal sources as well as from clinicians and other researchers to

be integrated using visual editor. The knowledge is repre-

sented in a form of rules (called observations) evaluated (for

a specific patient) to logical value: True or False and may con-

cern clinical and multi-omics data. Rules can be use as filters

to select and group patients with certain common character-

istics, of which one part may be a hypothesis and the other - a

diagnosis (both parts can be stored in the data warehouse). As

soon as the hypothesis is positively verified (research stage), a

filter consisting only of the first part can be used to find

patients with a high probability of a given diagnosis (diagnos-

tic stage). The system interface (see Fig. 4) allows using sev-

eral types of observations:

� simple – built based on a single raw value/feature, coming

directly from the warehouse, e.g.: Old: Age > 70;

� composite – composed of one or more sub-observations,

that performs certain operations on the data (logical,

arithmetic etc.). This way the rules can be assembled from

previously prepared, reusable units like: OldMen : Old AND

IsMen;

� function – predefined (e.g. multiplication, square root) and

grouping functions (average, sum, etc.) on selected one

or more observations;

� generic – enable construction of a template observation,

which parameter’s values can be filled later from external

source (e.g. csv file) or by the user. An example:

HighBloodPreasureð#XÞ: Blood preasure > #X, where #X

can be given while using this generic observation (e.g.

HighBloodPreasureð160Þ).

We enable hierarchical creation of the observations on

the basis of previously defined components together with

assigning them to multiple categories (and sub-categories).

Just like building from blocks - users can select observations

which differ in the level of detail and complexity. The idea is

to let less technical users to just create and use simple and

general high-level observations and ’hide’ from them

advanced and complex low-level definitions and parameters.

It is up to the experts in particular field to define more

advanced relations. In addition, there also exists information

observations, which role is to control and limit the data

returned by the filters.
Fig. 4 – The interface to create
Fig. 6 shows an example of a hierarchical observation with

levels their view that are composed from the blocks of knowl-

edge. Starting from the top, we see one of the examples of

general observation related to the important mutations in

the lung cancer. It is composed of several observations visible

in the detailed view level. If the user does not want to check

any particular conditions or does not know this particular

field, he can simply use this observation and ignore the

details. However, expert users can dig deeper and deeper

(even to raw data), set desired conditions or even compose

own observation from the chosen building blocks.

2.3.2. Observation views
Any integrated warehouse should allow a direct exploration

by advanced users, e.g. bioinformaticians or computer scien-

tists. Queries could be asked based on the clinical and multi-

omics data using the SQL-like editor. Distributed SQL query

engines (SQL-on-Hadoop) are designed to execute such

queries on large datasets that are stored within big data ware-

houses. Notable SQL-on-Hadoop systems include Apache

Impala [67], Apache Drill [68] an Facebook’s Presto [69].

In IntelliOmics, we decided to incorporate Presto as a dis-

tributed SQL query engine because it was more stable and

advanced when the system was designed. It supports interac-

tive analytical queries against data sources of all sizes up to

petabytes as well as previously defined set of queries created

by knowledge base building blocks. IntelliOmics also offers

more advanced observation views: one that is centered on a

single patient, and one that is focused on a group of patients,

whereas theusercandefinepracticallyanygroup. Inboth inter-

faces a list of predefined observations can be selected and exe-

cuted. The results can be viewed in form of tables and various

charts, and the imagining data can be viewed and annotated

using theDICOMmodule (Fig. 5). Theweb-basedDICOMviewer

performs an on-the-fly conversion of the raw imagining data.

Themodule displays only the anonymizedversions of the orig-

inal images. Any unnecessary personal health information is

therefore omitted. In addition, the system offers statistical

analysismodule that allows performing varied statistical tests

andpreparingdefinable reportswhichcanbe easily distributed

or printed (e.g. as clinical reports in pdf).

2.3.3. Exploration module
The rapid development of large-scale technologies and an

increased use of omics techniques in clinical practice is driv-
a new block of knowledge.



Fig. 5 – Viewing the stored data using the SQL and observation views (top), and the results: tables, charts, images and reports

(bottom).
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ing researchers towards multi-omics [6,2]. This approach

accelerates efficient prediction of the treatment response

with substantially increased accuracy in personalized medi-

cine. It also shows a strong correlation between molecular

profiles and clinical outcomes in various types of cancers. A

number of machine learning algorithms can be useful and
Fig. 6 – An example view of hierarchical observations.
reveal previously unrecognized molecular patterns associated

with clinical phenotypes and can provide novel insights into

the multi-omics data [20].

Semi-automatic analyses of the gathered raw, transformed

and filtered data can be performed with machine learning

tools [4]. One of the most promising tools is the Spark’s

open-source distributed machine learning library called MLlib

[70]. It provides efficient features for a wide range of learning

settings, and includes several underlying statistical, opti-

mization, and linear algebra primitives. Within the MLlib

library, it is possible to perform fast and scalable large-scale

data analysis including classification, regression, collabora-

tive filtering, clustering, and dimensionality reduction. Addi-

tionally, Spark MLlib also provides easy-to-use APIs that

enable deep learning, which is currently attracting interest

in health informatics [5]. However, Spark’s MLib is not really

user friendly, therefore, additional high-level interfaces

should be build upon it to make it available for the less tech-

nical users.
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3. Results

The IntelliOmics is created within the framework of a

medium-scale medical project [43] to support molecular

diagnosis and therapy individualization in oncology. The

project is called MOBIT and is focused on the non-small cell

lung cancer (NSCLC) which is the most common type of

lung cancer. It accounts for 85% of all lung cancer cases

and include subtypes like: squamous-cell carcinoma, ade-

nocarcinoma, and large cell carcinoma. Usually symptoms

of NSCLC do not appear until the disease is already at an

advanced stage. However, clinical studies have shown that

individualized molecular targeted therapies increase sur-

vival time and improve patients’ quality of life [48]. The

result of the development phase of the project is a design

of unique software for the omic- and clinical data acquisi-

tion, integration and analysis for use in the implementation

of individualized therapy. The IntelliOmics system has been

developed and implemented in close collaboration and

supervision with various research centres and university

clinical hospitals.

3.1. Hardware architecture

The current architecture for IntelliOmics is illustrated in the

Fig. 7. It uses 22 Dell PowerEdge R440 servers with 8-core

Intel Xeon Silver 4410: 2 managing servers - AccessNode

(64 GB RAM, 2x480 GB SSD) and NameNode (64 GB RAM,

2x480 GB SSD, 2x2TB HDD); and 20 working servers DataNode

(32 GB RAM, 2x2TB HDD). There is 60 TB available for data in

a distributed HDFS file system. That relatively inexpensive

computer cluster costed only 50 000$ but its performance is

enough for efficient data analysis. For the most computing-

demanding tasks involving whole genome sequencing data

- a search for a single mutation for a particular patient is less

than a quarter of second. To filter and scan for all important

mutations that activate EGFR gene (over 40 mutations) it

takes 7 s for a single patient, and less than 2 min for all

the patients. Proposed system infrastructure is cost-

effective and can be easily scaled to analyze larger volumes

of data.
Fig. 7 – Hardware architecture of the IntelliOmics system.
3.2. Collected data and performed analysis

The highest standards of the gathered data and their process-

ing are the result of: reliable selection of patients; collection of

a high-quality biological materials; the most advanced

research equipment for high-throughput studies; experience

in analysis of large-scale data; access to the know-how in

the field of biobanking and the hybrid PET/MRI system. In

the Mobit project we integrated and explored collected data

(see Section 2.1) from over a hundred of patients suffering

non-small cell lung cancer and control group. The data

includes personal and clinical information, imaging data

and the results from biological materials.

The data collections for a typical patient is as follows:

� patient or nurse fills up the survey forms with various

types of data describing the patient, disease and medical

examination. Additional results from biological materials,

DXA (Dual Energy X-ray Absorptiometry), inBody, retinal

scan, exercise tests (e.g. treadmill) or even pathologist’s

report are imported automatically or manually to the sys-

tem to previously defined forms.

� the genomics and transcriptiomics data is automatically

transferred to the storage matrix server. As each file has

unique, specified name composed of patientID, project

type, data source, data type and timestamp, the system

recognize and semi-automatically imports the data.

� the whole genome sequencing (WGS) is performed with

Illumina HiSeq4000 instrument on a patient cancer tissue

and blood. We focused on the cancer genomic alterna-

tions, including point mutations, small insertions or dele-

tions, copy number alterations, somatic and structural

variations. The use of high-coverage transcriptomics,

allows to not only quantify gene expression profiles, but

also detect alternative splicing, editing and fusion of

transcript.

� metabolomics analyses have been performed by use

LCQTOF-MS and peptide samples were analyzed on a the

Autoflex-ToF/ToF mass spectrometer. Serum and tumor

tissue samples of patients with NSCLC and controls were

fingerprinted. Leukocyte and urine fingerprinting method-

ology have been applied as well. The exported results of

these analysis in a csv format are next imported into the

system.

� the PET/MRI and CT images from the patients with NSCLC

before tumor resection, and after surgery are also

imported to the system in a DICOM format. Currently, we

do not examine the raw images but only their description

in a form of a defined survey form.

Next step is the data processing and integration. Designed

and implemented analytical pipelines for the next-generation

sequencing data analyses include the following technologies,

their intersections and downstream analyses: RNAseq,

smallRNAseq, methylated DNA and genome sequencing.

Obtained data has been used to detect sequence and struc-

tural polymorphisms that was further correlated with the

phenotypical data (drug resistance, prognosis, etc.) as well



Fig. 8 – Interactive observation tree for Tagrisso

recommendation allowing examination of the results for a

patient group.
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as with results from other technologies (e.g. gene expression

levels and DNA methylation). As a result, we were able to

detect genes and isoforms that were up and down regulated

depending on tumor stage and phenotype. IntelliOmics is

designed to work with any workflow, scripts or external tools

as it monitors and controls when, where and what is running.

During the project we often changed, tested and adapted dif-

ferent tools due to their very dynamic development. The

same applies to databases e.g. for annotation and even refer-

ence genomes as depending on user requirements two were

actively used: GRCh38 and GRCh37. Therefore, it is important

to let bioinformaticians choose the best according to their

tools, transformations and databases.

In our experiments we follow the GATK protocols and

workflows from NextFlow [58]. The most time and resource

consuming task was the WGS analysis which takes a mini-

mum of one-two days to complete per sample. Hopefully,

we could analyze a good number of samples in parallel. As

for the other omics the calculations took no more than few

hours to finish.
3.3. Knowledge base

The core of the MOBIT team consortium consists of people

from both research (bio-medicine, bioinformatics and com-

puter scientists) and hospital (physicians and clinicians).

Thanks to the team experience and scientific background

we have managed to extend the knowledge base with several

hundreds of observations specific to the non-small lung can-

cer (including lists of mutations, genes of special interest and

potential drivers); several dozen of study scenarios that check

various patient attributes stored in the warehouse; thousands

of filters and multi-level condition blocks.

Below three examples of knowledge extraction within

IntelliOmics for the non-small lung cancer are reported.

Please consider this as a brief example of the system’s capa-

bilities rather than an actual medical analysis.

3.3.1. Potential therapy with Tagrisso
The domain knowledge in a form of recommendation for

application of Tagrisso (trade name of osimertinib) was

defined as a tree of observations (Fig. 8). It contains several

preconditions from multiple data sources:

� patient’s sex and clinical history of his treatment (e.g.

taken medicament to avoid potential interactions) – from

questionnaires;

� kidney, liver and blood system parameters – from the

blood morphology examination;

� presence of specific mutations – from genomics data;

� cancer type – from a pathologist’s report.

The final tree was constructed from previously defined

observations joined by AND and OR operators. Such a modu-

lar character of construction allows easy reusing of the obser-

vations as building blocks. The tree can be interactively

validated – after expanding any of its branches each observa-

tion on every level can be evaluated independently. The anal-
ysis can be run and its results may be presented for a single

patient (positive or negative) or any group of patients. The

group is specified via mechanism of a filtering observation.

Some nodes (i.e. mutation and drug interaction ones) were

constructed in a generic way (generic observations), where

actual parameter values were replaced with symbolic param-

eters, which were set further within specialized binder wrap-

pers. Here is an example of EGFR genemutation’s parameters:

f#var type ¼ ’snp’ ; #gene ¼ ’EGFR’;

#vcf start ¼ 55249070 ; #vcf end ¼ 55249071;

#ref ¼ ’C’ ; #alt ¼ ’T’;

#var sub type ¼ ’ts’ ; #aa change ¼ ’T790M’;

#chrom ¼ ’chr7’g

:

Depending on the mutation type, the parameters involve

the variant position, change and additional annotations [65]

gathered by the tools like Annovar, SnpEff, VEP etc.

3.3.2. Novel mutations connected with non-small lung cancer
Within IntelliOmics, we have created various multi-omics

knowledge observations using the interface presented in

Fig. 6. For an over 3 million gene variants (per patient) we fil-

tered around 200 000 high quality variants (based on sequenc-

ing quality and quantitative metrics) with over 90 000

alterations in the gene coding regions. Next, we filtered highly

pathogenic variants, excluding existing ones in popular gene

datasets (COSMIC, ClinVar, HGMD, OMIM), and focused on

changes that appeared in genes related to non-small lung

cancer. Several thousands of potential mutations were then

confronted with gene fusions and microRNA control site

and the main attention has been focused on somatic muta-

tions. With such an approach, we managed to find no more

than dozen potentially highly pathogenic novel mutations

for both group of patients: adenoma and squamous cell carci-

noma. Currently, our multidisciplinary research team is

investigating our findings to validate their biological meaning.

The next possible step is to scan for pathways altered by the

gene mutations (starting from SNP mutations, through genes

expressions, protein coding till metabolomic data).
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3.3.3. Data exploration with MLlib
Sample analysis was performed with MLlib in order to recog-

nize the type of non-small lung cancer: adenoma (AD) and

squamous cell carcinoma (SCC). Among the available algo-

rithms the decision trees (DTs) [71] were selected. DTs have

proven to be successful in biomedical analysis [71] and their

prediction models are easy to interpret. We have performed

the experiments with 10-fold stratified cross-validation using

four types of data: (a) 4 basic clinical information: sex, age,

pack-year for smokers and the stage of disease; (b) over 500

metabolites from plasma with positive polarization and

reverse-phase (RP) chromatographic separations in metabolo-

mic studies; (c) 28 selected microRNA variables and (d) 16

selected single nucleotide polymorhisms (SNPs) related to

the non-small lung cancer. Since not all the patients had a

complete set of tests (see Fig. 9), we have performed five vari-

ants of experiments, depending of the available data: (a)+(b),

(a)+(c), (a)+(b)+(c), (a)+(c)+(d), (a)+(b)+(c)+(d).

Results enclosed in Fig. 10 show two examples of decision

trees and their classification accuracies. In both cases the

generated model considers omic data more often to make

the predictions and skipped clinical and/or microRNA infor-

mation (see Fig. 10). The possible reason is the high ratio of

metabolomic features to relatively low number of patients.

This problem often refers as the curse of dimensionality as

reclassification quality results is much higher than the classi-

fication quality on an independent set. However, lower pre-

diction quality for the variants without metabolomics data

(Fig. 10-right) suggests that found metabolites may, in fact,

have important discriminative potential. Both trees are very

simple, provide logical reasoning and may actually help in

understanding and identifying relationships between specific

features and improve biomarker discovery.

This way, IntelliOmics is able to generate many predictive

models based on different combinations of multi-omics sets.

In a sense, our system could act as artificial panel/medical

review board, where each expert (induced decision tree) pre-

sents conclusions based on different types of data. One could

look at the patient from different perspectives and the deci-

sion support could be prepared semi-automatically.

Our system provides the possibility of using different mod-

els, like Random Forests (RF) [72] which average multiple deci-

sion trees and are popular in medical data mining. Performed

experiments show that RF managed to achieve high reclassi-

fication accuracy (97.8% Fig. 10-left and 95.5% Fig. 10-right)

but relatively much lower classification accuracy (56.3% and

64.3% respectively). However, when modeling is aimed at
Fig. 9 – The number of patients who have (a) clinical, (b)

metabolic, (c) microRNA and (d) genomic tests performed.
understanding basic environmental processes, such methods

are not so useful because they generate more complex and

less understandable models.

However, to interpret information contained within the

various attribute types and get some biological understand-

ing, a much larger group of patients is needed. Additional val-

idation by an independent cohort is also required to draw any

conclusion or claim biological or clinical evidence. Finally, a

care should be taken to ensure that the histological assign-

ment of the patients is as accurate as possible (e.g., evaluation

by multiple independent pathologists).

4. Discussion

The closest thing to our system is the Databricks solution [41],

which was the direct inspiration for our Inteliomics system.

This one of the largest frameworks for massive genomics

analysis is based on the best open-source solutions intelli-

gently wrapped into a unified data web-based platform. The

main difference is that the service is available on a cloud

hosting platform and cannot be run in private data-centers

or on-premise clusters. This raises questions about costs,

which can be very high, especially for genomics data that

are not only large in volume but also require a lot of prepro-

cessing and transformations. The biggest positive surprise

with databricks has been the speed of processing genomic

data. Running standard NGS pipelines involing alignment

and variant calling were about 20–50 times faster than the

calculations performed on our IntelliOmics software servers.

As an excuse, we must add that our computing servers were

not among the fastest. The main drawback of Databricks is

that it loses some of the flexibility available in open-source

components that comewith it. We were unable to run custom

scripts or workflows that use alternative algorithms. Finally,

the Databricks is targeted at computational biologists and

bioinformaticians, and is limited to genomic data only, so

clinical or other omics cannot be used in the analysis.

Another powerful commercial product is Ingenuity Variant

and Pathway Analysis (IPA) [47] from QIAGEN Bioinformatics

[46]. It is the leading pathway analysis application among

the life science research community for analysis, integration

and interpretation of data from –omics experiments. Like

Databricks it is a web-based application, but unlike Datab-

ricks it allows multi-omics analysis. Similar calculations

takes much more time on IPA, but can be done not only in

cloud but also on the CLC genomic server or even on a per-

sonal computer. The system is a closed box and does not

allow you to run any other algorithms or analysis other than

those implemented in the software. However, the number of

possible automatic analysis and solutions along with the

extensive built-in knowledge base is impressive, but this

comes with a high license cost. Finally, as in Databricks,

importing more complex clinical data or additional user

knowledge is limited.

Currently, the most popular free solution for computa-

tional research is a software framework called Galaxy [45]. It

is an open, web-based platform for accessible, reproducible

and transparent biomedical analysis, available on public ser-

vers, in the cloud or locally. Galaxy allows bioinformaticians



Fig. 10 – Examples of decision trees generated for the integrated (a) clinical, (b) metabolic , (c) microRNA and (d) genomic data.

Left tree was induced with (a)+(b), (a)+(b)+(c) and (a)+(b)+(c)+(d) whereas right tree with (a)+(c) and (a)+(c)+(d) data.
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and researchers to define and run workflows that include

everything from data loading, transformation, processing to

displaying analysis results. The system is largely defined by

tools and extensions proposed by the community. Although

originally developed for genomic research, it is largely

domain agnostic and is now used as a general bioinformatics

workflow management system. Recently, a number of spe-

cialized plugins or add-ons have emerged to perform com-

plete and integrated analysis for multi-omics extensions [50]

and visualizations [49]. The Galaxy framework is great as long

as it comes down to running specific analyses by scientific

communities. However, it may not work well as a complete

solution for running a medical project that will benefit not

only scientists, but also nurses or clinicians.

In Tables 1 and 2 we have shown reviews that address a

much larger number of omics-related software, tools, and

other approaches, which already number in the hundreds.

New algorithms, updates, pipelines, and systems appear every

day, but most of these new developments are of interest pri-

marily to bioinformaticians and researchers. Broader user

groups associated with the medical centers or local research

projects seek for more comprehensive user-friendly services

that help to storage, manage and analysis various types of

omics, imaging and clinical data. Unfortunately, it is impossi-

ble to create a single system thatwillmeet all user needs. How-

ever, we have shown that with some effort it is possible to

createend-to-endsoftware tailored to theneedsof awideaudi-

ence (see Table 3) using free, well-designed and maintained

components with an open license for both personal and com-

mercial use.

There are several issues and concerns to consider before

creating your own system. First of all, unless you want to

write your own solutions from scratch, you are limited to

existing solutions that are open source or with easily acces-

sible API (application programming interface). In this work

we proposed those that we believe are the best suited to

for medium or even large medical projects. Some of the pro-

posed open source systems are already successfully used in

commercial products such as Databricks. While we wanted
to show an essential list of tools, there are many other spe-

cialized approaches that may be applicable, such as NLP

(Natural Language Processing) for sentiment analysis based

on physician descriptions in clinical data or much more

advanced data mining libraries besides MLLib. When it

comes to raw data processing, transformation and partial

integration, we found the approach used in Galaxy software

to be the most suitable. In this field, the dynamics of the

emergence of new tools, libraries, databases (e.g. for annota-

tion) is so high that this part should be as flexible as possi-

ble. Therefore, bioinformaticians can simply run their scripts

or pipelines under the supervision of a system that monitors

and allocates resources. Finally, in terms of presentation of

results and overall user-friendliness, we found IPA from QIA-

GEN to be the most attractive. However, it all comes down to

the needs of the specific project and the people that will use

that software. As a proof of concept we developed IntelliO-

mics for amid-scale medical project [43] focused on preci-

sion medicine for lung cancer patients which was

described in detail in previous sections.

The proposed system can also be the basis for practical

clinical applications. Once we have populated the system’s

database with patient information, it is necessary to analyze

the collected data and look for patterns or relationships.

The next natural step is to apply derived and validated knowl-

edge on new patients or groups of patients from the hospital

e.g. in clinical trials. In the case of the MOBIT project [43], we

worked on a lung cancer management tool incorporating PET/

MRI, genomics and biomarkers as a decision-making tool for

treatment selection. This software is designed based on data

from a research model (patients diagnosed with lung cancer

undergoing surgical treatment) and data from a designated

patient group, i.e., patients with suspected NSCLC or at high

risk. Newly obtained biomarkers can help clinicians to diag-

nose cancer in high-risk patients before the appearance of

visible lung lesions. Another practical clinical application of

the collected information is the individualization of treat-

ment selection of cancer patients (chemotherapy). By cycli-

cally collecting information about the drugs administered to
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patients (type, dose, time of administration) and their health

status, it is possible to build a model suggesting the best

potential treatment for future patients. Thus, having an inte-

grated knowledge base with tools for their analysis that also

include elements of artificial intelligence can make a huge

contribution to personalized medicine.

5. Conclusions

Building a private, standalone system for multi-omics data

analysis towards personalized medicine may look as a very

difficult task. However, this process can be greatly simplified

and accelerated by using well-designed and maintained com-

ponents with open source license for both personal and com-

mercial use. Our proposition aims to serve some guidelines

how to create your own local end-to-end service for medium

size or even a large-scale projects. We have picked what we

believe to be the best features from existing systems both free

and commercial to integrate them into a single system. The

overall framework is modeled after commercial product

Databricks which was constituted on the Hadoop ecosystem

which is efficient for the big data analysis. In terms of flexibil-

ity of data transformation, processing and integration we

were inspired by the Galaxy system in which the user can

simply run its own scripts or tools. As a result, we present

advantages and disadvantages of dozen tools along with the

recipes how to include them in building your own system.

To validate this guidelines, we have developed the IntelliO-

mics. It is free, personalized and flexible solution for multi-

omics data analysis is capable of integrating quantitative

omics data and builds prediction models for cancer pheno-

types, making the state-of-the-art machine-learning methods

accessible to researchers of all backgrounds. The results are

very promising and there are already a number of projects

related to other cancers as well as e.g. diabetes for which such

a designed system is applicable. Currently, IntelliOmics is at

the last stage of the clinical interfaces completion, so the sys-

tem can display aggregated knowledge in user-friendly for-

mats. As a result, physicians, non-technical laboratory

personnel, medical assistants, data scientists and research

coordinators, and other end-users can enter data, access infor-

mation, mine the datasets and understand the output. We

believe that its total cost (hardware + software development)

is relatively small compared to the benefits and possibilities

it offers.

The roadblocks and future works include ethical, legal,

and logistical concerns. In addition, ensuring data security

and protection of patient rights while simultaneously facili-

tating standardization is a principal rule in the public support

maintenance. Finally, we would like to extend our pipelines

with the radiomics-based analysis of the medical imaging

[73]. This approach is becoming increasingly important in

cancer studies [74] and personalized medicine [75].
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