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Abstract. Extracting knowledge from gene expression data is still a
major challenge. Relative expression algorithms use the ordering rela-
tionships for a small collection of genes and are successfully applied for
micro-array classification. However, searching for all possible subsets of
genes requires a significant number of calculations, assumptions and lim-
itations. In this paper we propose an evolutionary algorithm for global
induction of top-scoring pair decision trees. We have designed several spe-
cialized genetic operators that search for the best tree structure and the
splits in internal nodes which involve pairwise comparisons of the gene
expression values. Preliminary validation performed on real-life micro-
array datasets is promising as the proposed solution is highly compet-
itive to other relative expression algorithms and allows exploring much
larger solution space.

Keywords: evolutionary algorithms, decision tree, top-scoring pair,
classification, gene expression, micro-array.

1 Introduction

DNA chips [16] may be used to assist diagnosis and to discriminate cancer sam-
ples from normal ones [17]. Extracting accurate and simple decision rules that
contains marker genes are of great interest for biomedical applications. However,
finding a meaningful and robust classification rule is a real challenge, since in
different studies of the same cancer, diverse genes consider to be marked [23].

Dimensionality and redundancy are one of the most typical statistical prob-
lems that often occur with micro-array analysis. In particular, we are faced with
the ”small N, large P problem” [27] of statistical learning. The number of sam-
ples (denoted by N) comparing to the number of genes (P ) remains quite small
as N usually does not exceeded one or two hundreds where P is usually sev-
eral thousands. The high ratio of features/observations may influence the model
complexity and can cause the classifier to over-fit the training data. Further-
more, most of genes are known to be irrelevant so the gene selection prior to
classification should be considered [17] to: simplify calculations, decrease model
complexity and often to improve accuracy of the following classification.

Recently, a large number of supervised solutions have been described in lit-
erature for micro-array classification, including: nearest neighbors [8], neural
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networks [3], Support Vector Machine [20] and random forests [7]. Most of ma-
chine learning methods provide ”black box” decision rules, which usually involve
many genes combined in a highly complex fashion and therefore are difficult to
interpret from medical point of view. There is a need for simple models like de-
cision trees or rule extraction systems which may actually help in understanding
and identifying casual relationships between specific genes.

In this paper we propose a hybrid solution called Global Top-Scoring Pair De-
cision Tree (GTSPDT ) that combines the power of evolutionary approach, rel-
ative expression algorithms and decision trees. It combines different top-scoring
extensions, eliminates their restrictions and allows exploring much larger so-
lution space. Evolutionary algorithm (EA) globally searches for the best tree
structure and tests which involve pairwise comparisons of the gene expression
values. The general structure of our solution follows a typical framework of EA
with an unstructured population and a generational selection. We have designed
several specialized operators to mutate and cross-over individuals and a fitness
function that helps mitigating the over-fitting problem.

The rest of the paper is organized as follows. In the next section the relative
expression algorithms and decision tree classifiers for gene expression analysis
are briefly recalled. Section 3 describes in detail the GTSPDT solution and
section 4 presents preliminary experimental validation on real-life micro-array
datasets. In the last section, the paper is concluded and possible future works
are sketched.

2 Background and Motivation

In this section the decision trees and the family of top-scoring algorithms are
presented and their application for gene expression data is discussed.

2.1 Decision Trees

Decision trees (also known as classification trees) [22] represent one of the main
techniques of classification analysis in data mining and knowledge discovery.
They predict the class membership (dependent variable) of an instance using its
measurements of predictor variables.

In the literature, there are several attempts to use decision trees for the clas-
sification analysis on gene expression data. In [8] the author compares some
classification principles, among which there is the CART system and in [28] the
application of C4.5, bagged and boosted decision trees are presented. In [32] the
author compares decision trees with SVMs on gene expression data and con-
cludes that bagging and boosting decision tress perform as well as or close to
SVM algorithms. However ensemble methods and decision trees with complex
multivariate tests based on linear or non-linear combination splits are much more
difficult to understand or interpret by human experts. Although higher accuracy
than single-tree solutions, their potential for scientific modeling of underlying
processes is limited.
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2.2 A Family of Top-Scoring Algorithms

Relative expression algorithms [10] are simple yet powerful classifiers. The use
of the ordering relationships for a small collection of genes has potential for
identify gene-gene interactions with plausible biological interpretation and direct
clinical applicability [15]. The most popular solution is called Top-Scoring Pair
(TSP ) [10] and has many applications in identifying marker genes in micro-
array datasets [26] or as a feature selection in more complex classifiers [32]. In
addition, the TSP solution is parameter free, data driven learning approach
that is invariant to any simple transformation of data like normalization and
standardization.

TSP is extended in two main directions, each having its pros and cons. First
technique called k−TSP [29] increases the number of top-scoring pairs included
in the final prediction. This solution was later extended by weight pairwise com-
parisons Weight k − TSP [4] and Top-Scoring Pair Decision Tree (TSPDT )
[5]. Different approaches called Top-Scoring Triplet (TST ) [15] and Top-Scoring
’N’ (TSN) [19] search for more than two ordering relationships between genes.
Multiple implementation of these solutions may be found as R package [31].

Top-Scoring Pair. The TSP method proposed by Donald Geman [10] is based
on pairwise comparisons of gene expression values. Discrimination between two
classes depends on finding pairs of genes that achieve the highest ranking value
called ”score”. Consider a gene expression profile consisting of P genes and
N samples participating in the training micro-array dataset. Let the data be
represented as a P ×N matrix in which expression value of u-th gene from v-th
sample is denoted as xuv. Each row represents observations of a particular gene
over N training samples, and each column represents a gene expression profile
composed from P genes. Each profile has a true class label denoted Cm ∈ C =
{C1, . . . , CM}. For the simplicity of calculations it is assumed that there are only
two classes (M = 2) and profiles with indexes from 1 to N1 (N1 < N) belong to
the first class (C1) and profiles from range 〈N1 +1, N〉 to the second class (C2).

The TSP method focuses on gene pair matching (i, j) (i, j ∈ {1, . . . , P}, i �= j)
for which there is the highest difference in probability p of an event xin < xjn

(n = 1, 2, . . . , N) between class C1 and C2. For each pair of genes (i, j) two
probabilities are calculated pij(C1) and pij(C2):

pij(C1) =
1

|C1|
N1∑

n=1

I(xin < xjn),

pij(C2) =
1

|C2|
N∑

n=N1+1

I(xin < xjn),

where |Cm| denotes a number of profiles from class Cm and I(xin < xjn) is the
indicator function defined as:

I(xin < xjn) =

{
1, if xin < xjn

0, if xin ≥ xjn
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TSP is a rank-based method, so for each pair of genes (i, j) the ”score” denoted
Δij is calculated as:

Δij = |pij(C1)− pij(C2)|.
In the next step of the algorithm, pairs with the highest score are chosen.

There should be only one top pair in the TSP method, however it is possible
that multiple gene pairs achieve the same top score. In that case a secondary
ranking, based on the rank differences in each class and samples, is used to
eliminate draws.

γij (C1) =

∑N1

n=1(xin − xjn)

|C1| ,

γij (C2) =

∑N
n=N1+1(xin − xjn)

|C2| .

For each pair of genes (i, j) the second ranking is calculated and pair with the
highest score τij is chosen:

τij = |γij (C1)− γij (C2)|,

The TSP prediction is made by comparing the relation between expression val-
ues of two genes (i, j) marked as ”top-scoring pair” in new test sample w. If we
observe that pij(C1) ≥ pij(C2) and xiw < xjw , then TSP votes for class C1,
however if xiw ≥ xjw then TSP votes for class C2. An opposite situation is when
pij(C1) < pij(C2), cause if xiw < xjw TSP votes for C1 and if xiw ≥ xjw TSP
chooses C2.

Top-Scoring Extensions. There are two main ways to extend the TSP solu-
tion: application of multiple pairs of genes or comparison relationships for more
than two genes. One of the solutions that uses the first approach is k−TSP [29]
which applies no more than k top-scoring pairs in classification. The parameter
k can be set up a priori or can be determined by a cross-validation. Next, the
k−TSP classifier uses no more than k top scoring disjoint gene pairs that have
the highest score and simple majority vote for a final decision.

The Weight k−TSP [4] solution modifies rankings of k−TSP and calculates
the ratio of two genes in order to find optimal top-scoring pairs.

Solution called TSPDT [5] is a hybrid of k − TSP and a top-down induced
decision tree [24]. At first, a test analogous to the k − TSP method is searched
for the root node. Then, the set of instances is split according to decision of the
best pair (or pairs) of genes in the current node and then each derived subset
goes to the corresponding branch. The process is recursively repeated for each
branch until leaf node is reached.

Different approach for the TSP extension is discussed in [15] where authors
focused on the predicting germline BRCA1 mutations in breast cancer. A three-
gene version of relative expression analysis called Top-Scoring Triplet (TST ) [15]
was proposed as potentially more discriminating than TSP since there are six
possible orderings that must be analyzed.
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Next, the general idea of pairwise or triplet rank comparisons was proposed
in [19]. The top-scoring N (TSN) algorithm uses generic permutations and dy-
namically adjust the size to control both the permutation and combination space
available for classification. Variable N denotes the size of the classifier, there-
fore in the case where N = 2 the TSN algorithm simply reduces to the TSP
method and when N = 3, the TSN can be seen as TST . The classifier’s size can
be chosen by a user or by an internal cross-validation that checks classification
accuracy for the different values of N (on a training data, in a range specified
by the user) and selects the classifier with the highest score.

2.3 Motivation

There are two main drawbacks of TSP extensions. The first one is enormous
computational requirements because the general complexity of aforementioned
algorithms is O(k ∗ PN ), where k is the number of top-scoring groups, P is the
number of features and N is the size of group of genes which ordering relation-
ships is compared. There are some attempts of improving TSP performance by
parallelization the algorithm and using graphic processing unit (GPU) for cal-
culations [18], however the parameters k or/and N must be small (upper limit
of the test was equal: N = 4, k = 1 but only when P was significantly reduced
by the feature selection).

The second drawback is finding accurate value of the parameters k and N . In
TSP extensions they are defined by the user or determined by internal cross-
validation. However, it is time consuming and decreases the set of instances
which is already very small. In addition, it is also not clear which extension
should be prefered: k − TSP or TSN . It should be noted that the k − TSP
algorithms cannot replace the TSN with N > 2 as the k − TSP has restriction
to use only disjoint gene pairs. On the other side, the k−TST or k−TSN were
not proposed in the literature, probably because of it’s huge complexity.

In the TSPDT system k − TSP algorithm is calculated in each non-terminal
tree node, therefore the general complexity must be multiplied by the number of
internal nodes. In addition, the TSPDT like most of practical decision-tree induc-
ers is based on heuristics such as greedy approach where locally optimal decisions
are made in each node and cannot guarantee to return optimal classifier.

Previously performed research showed that decision trees [11,6], extension of
TSP [4] and hybrid solution called TSPDT [5] may be successfully applied to
the gene expression data. In this paper we would like to unite aforementioned
extensions of TSP through the evolutionary approach. We propose a hybrid
solution called Global Top-Scoring Pair Decision Tree (GTSPDT ) that combines
the power of evolutionary approach, relative expression algorithms and decision
trees.

Our goal is to improve classification accuracy and help in identifying genomic
”marker interactions”. Evolutionary algorithm searches for the best tree struc-
ture and tests which involve multiple pairwise comparisons of the gene expression
values. The number of top-scoring pairs applied in each split is determined by
the evolution and by removing restrictions on disjoint gene pairs, the splits may
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compare relationships for more than two genes like in TSN . Application of evo-
lutionary algorithms to the TSP solutions can decrease computation time and
allows to explore larger solution space.

3 Global Top-Scoring Pair Decision Tree

General structure of GTSPDT follows a typical framework of evolutionary al-
gorithms [21] with an unstructured population and a generational selection.

Representation. Decision trees are quite complicated tree structures, in which
number of nodes, type of the tests and even number of test outcomes are not
known in advance. Therefore, representing individuals in their actual form (as
potential tree-solutions) seems more adequate than encoding them in the fixed-
size (usually binary) chromosomes.

Figure 1 illustrates the single individual. Each test in a non-terminal node is
composed of a group of top-scoring pairs. Similarly to TSPDT and k − TSP ,
the final decision in each node depend on a simple majority voting where each
top-scoring pair vote has the same weight. Therefore, the TST solution can
be represented by the 3 top-scoring pairs that involve only three genes. In the
analogous way, TSN , k− TSP or even a variation k− TSN representation can
be found by the GTSPDT . In every node information about learning vectors
associated with the node is also stored. This enables the algorithm to perform
more efficiently local structure and tests modifications during applications of
genetic operators.

Initialization. Initial population could be generated randomly to cover the
entire range of possible solutions, however due to the large solution space, seeding
the initial population with good solutions may speed up evolutionary search.
Each individual in the initial population is generated by the classical top-down,

Fig. 1. An example representation of a single individual with different tests in internal
nodes
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greedy approach. Split in each internal node is based on a mixed dipole strategy
[13] and constructed as follows. Among feature vectors located in the node two
objects from different classes are randomly chosen. Next, an effective top-scoring
pair test (one pair of genes which separates this two objects) constructed on
randomly selected attributes constitute a split. The recursive partitioning is
finished when the node is pure (all training objects in the node are from the
same class) or the number of objects is lower than the predefined value (default
value: 5).

Selection and Termination Condition. Ranking linear selection [21] is ap-
plied as a selection mechanism. In each iteration, single individual with the
highest value of fitness function in current population is copied to the next one
(elitist strategy). Evolution terminates when the fitness of the best individual in
the population does not improve during the fixed number of generations (default
value: 1000). In case of a slow convergence, maximum number of generations is
also specified (default value: 10000), which allows to limit the computation time.

Genetic Operators. To maintain genetic diversity, we have proposed two spe-
cialized genetic operators corresponding to the classical mutation and cross-over.
Each evolutionary iteration starts with randomly choosing the operator type
where the default probability to select mutation equals 0.8 and to select cross-
over equals 0.2. Both operators have impact on the tree structure and the tests
in non-terminal nodes. After each operation it is usually necessary to relocate
learning vectors between parts of the tree rooted in the altered node. This can
cause that certain parts of the tree does not contain any learning vectors and
has to be pruned.

Cross-over starts with selecting positions in two affected individuals. We have
adapted three variants of recombination [13]:

– subtrees starting in the selected nodes are exchanged;
– tests associated with the nodes are exchanged (only when non-terminal nodes

are chosen);
– branches which start from the selected nodes are exchanged in random order

(only when non-terminal nodes are chosen).

Mutation solution starts with randomly choosing the type of node (equal proba-
bility to select leaf or internal node). Next, the ranked list of nodes of the selected
type is created and a mechanism analogous to ranking linear selection is applied
to decide which node will be affected. Depending on the type of node, ranking
takes into account two elements:

– location (level) of node. It is evident that modification of the test in the
root node affects whole tree and has a great impact, whereas mutation of an
internal node in lower parts of the tree has only a local impact. Therefore,
internal nodes in lower parts of the tree are mutated with higher probability;

– classification accuracy of the node - worse in terms of prediction accuracy
leaves and internal nodes are mutated with higher probability (homogeneous
leaves are not included).
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Each leaf can be transformed into an internal node with a new dipole test,
similar to one used in population initialization. As for the internal nodes, we
have propose a few variants of mutation:

– node can be transformed (pruned) into a leaf,
– test in node is replaced by new top-scoring pair,
– one of the attributes from top-scoring pair is replaced by random one which

effectively separates at least two objects in the node,
– new top-scoring pair is added or removed from the test in the node,
– tests between father and son exchanged,
– all subtrees are replaced with randomly chosen one.

Fitness Function. Specification of a suitable fitness function is one of the most
important and sensitive element in the design of evolutionary algorithm. It drives
the evolutionary search process and measures how good a single individual is in
terms of meeting the problem objective. Direct minimization of the prediction
error measured on the learning set usually leads to the over-fitting problem. In
typical top-down tree inducers it is partially mitigated by a stopping condition
and an application of the post-pruning [9].

In case of evolutionary induced classification trees, we need to balance the
reclassification quality and the complexity of the tree. A similar idea is used
in cost complexity pruning in the CART system [2]. The fitness function is
maximized and has the following form:

Fitness(T ) = QReclass(T )− α · (2 ∗ S(T ) +K(T )),

where QReclass(T ) is the reclassification quality of the tree T , S(T ) is the size
of the tree expressed as a number of nodes, K is the number of unique genes
that were used to build the classifier and α is the relative importance of the
complexity term specified by user (default value is 0.05). Penalty associated
with the classifier complexity increases proportionally with the tree size and the
number of different genes that constitute the top-pairs to prevent over-fitting.

It should be noticed that there is no optimal value of α for all possible datasets
and tuning it may lead to the improvement of results for the specific problem.
Further research to determine the appropriate value of complexity penalty term
for proposed solution is required and other commonly used measures such as
Akaikes information criterion (AIC) [1] or Bayesian information criterion (BIC)
[25]should be considered.

4 Results and Discussions

Performance of classifiers was investigated on public available micro-array
datasets, summarized in Table 1. We have extend previous comparison of TSP -
family algorithms [5] by enclosing the accuracy and the size of proposed solution
GTSPDT . To check and compare results of other popular decision trees and
rule classifiers on analyzed data please also refer to [5].
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Table 1. Details of Kent Ridge Bio-medical gene expression datasets

Datasets Symbol Attributes Train Test

Breast Cancer BC 24481 34/44 12/7
Central Nervous System CNS 7129 21/39 -
Colon Tumor CT 6500 40/22 -
DLBCL vs Follicular Lymphoma DF 6817 58/19 -
Leukemia ALL vs AML LA 7129 27/11 20/14
Lung Cancer Brigham LCB 12533 16/16 15/134
Lung Cancer University of Michigan LCM 7129 86/10 -
Lung Cancer - Totonto, Ontario LCT 2880 24/15 -
Ovarian Cancer OC 15154 91/162 -
Prostate Cancer PC 12600 52/50 27/8

Datasets and Setup. Proposed solution was tested on Kent Ridge Bio-medical
Repository [12] and the datasets refer to the studies of human cancer, includ-
ing: leukemia, colon tumor, prostate cancer, lung cancer, breast cancer, ovarian
cancer etc. If datasets, described in Table 1 were not pre-divided into the train-
ing and the testing sets we use typical 10-fold cross-validation. To ensure stable
results, for all datasets average score of 10 runs is shown.

In the experiments, we have compared proposed solution with TSP , k−TSP
and TSPDT . The maximum number of top-scoring pairs (parameter k) for
k − TSP and TSPDT was set to 9. Classification was performed with default
parameters for all algorithms through all datasets and was preceded by a step
known as feature selection, where a subset of relevant features is identified. We
decided to use popular method called Relief-F [14] for micro-array analysis with
its default parameters and 1000 features subset size.

Comparison of Top-Scoring Family Algorithms Methods. Table 2 sum-
maries classification performance for the proposed solution TSP , k − TSP ,
TSPDT and GTSPDT . Preliminary results show that on most of datasets,
the classification accuracy increased (or did not change) when decision trees
with TSP were applied. However, for some datasets, like Colon Tumor, both
decision tree solutions did not work well which may suggest over-fitting to the
training data. In general GTSPDT managed to increase classification accuracy
(average on all datasets over 3%). The greatest improvement of GTSPDT can
be noticed on the Lung Cancer datasets. According to the Friedman test, there
is a statistically significant difference (p-value of 0.0019) in the accuracy between
TSP and GTSPDT .

Number of internal nodes and the average number of top-scoring pairs used
in GTSPDT classifier presented in Table 2 allows to compare the sizes of tested
solutions. The TSP algorithm uses only one pair of genes and k−TSP no more
than 9 pairs. The TSPDT tree uses no more than k = 9 pairs in each internal
node, so this value must be multiplied by the tree size. The proposed solution
managed to slightly decrease the tree size comparing to TSPDT and used less
pairs of genes in each internal node (an average: 2.2).



238 M. Czajkowski and M. Kretowski

Table 2. Comparison of top-scoring algorithms, including accuracy, number of internal
nodes and the number of gene pairs

Classifiers accuracy and size of the solution
Datasets TSP k-TSP TSPDT GTSPDT

accuracy accuracy nodes accuracy nodes pairs accuracy

BC 52.63 68.42 2.0 78.95 1.1 2.9 77.37
CNS 49.00 58.50 3.0 63.00 1.1 3.1 65.00
CT 83.64 88.93 2.0 84.88 1.8 2.6 82.26
DF 72.75 87.82 1.6 95.25 1.4 3.2 97.70
LA 73.53 91.18 1.0 91.18 1.0 1.0 91.18
LCB 76.51 83.89 1.0 83.89 1.0 2.5 93.02
LCM 95.87 95.23 1.1 97.77 1.0 1.1 98.96
LCT 50.92 58.42 2.4 55.33 1.6 2.7 78.46
OC 99.77 100.00 1.0 100.00 1.0 1.0 99.60
PC 76.47 91.18 2.0 94.12 2.2 1.9 91.76

Average 73.11 82.36 1.7 84.44 1.3 2.2 87.53

5 Conclusion

In this paper we propose theGTSPDT system for solving classification problems
on micro-array data. The evolutionary approach of the hybrid solution combines
the power of decision trees and popular top-scoring algorithms. EA globally
searches for the best tree structure and the top-scoring pairs which are used
as splitting tests in non-terminal nodes. We have designed several specialized
operators to mutate and cross-over individuals (trees) and a fitness function
that helps mitigating the over-fitting problem. The GTSPDT solution is highly
competitive to other relative expression algorithms in terms of accuracy and
the model complexity. It can explore much larger permutation and combination
space and therefore has potential to discover new biological connections between
genes.

In this paper we only focus on the general concept of GTSPDT . We do not
enclose any biological aspects of the rules generated by proposed system or case
studies on particular datasets. Furthermore improvement is still required. Ap-
plication of local optimizations (memetic algorithms), new specialized operators
and self-adaptive parameters should speed up convergence of the evolutionary al-
gorithm. We also want to test different fitness functions based on e.g. information
criterion and extended GTSPDT to handle cost-sensitive and multi-class prob-
lems. More work on preprocessing datasets, gene selection and using additional
problem-specific knowledge is also required to improve GTSPDT classification
and rule discovery.
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