
FPGA- and Java-based Rapid Prototyping
of a Real-time H.264/AVC Decoder

Alexander Petrovsky, Marek Parfieniuk
Department of Real-Time Systems, Bialystok Technical University

Bialystok, Poland
Email: marekpk@wi.pb.edu.pl, palex@bsuir.by

Andrew Stankevich, Alexey Petrovsky
NTLab: New Technologies Laboratory

Minsk, Belarus
Email: www.ntlab-soc.com, petrovsky@bsuir.by

Abstract—The paper reports on an attempt to implement
a real-time hardware H.264 video decoder. The initial results
of the project are presented, especially a customized RISC core
and some digital modules, both of which have been implemented
in Xilinx FPGA. The former has to serve as a host processor
that supervises the latter, which speed up the essential decoding
subtasks. The system is designed and tested based on a software
decoder and diagnostic tool, which are implemented in Java
using the object-oriented paradigm. Based on our experiences, we
recommend the combination of FPGA and the Java platform as
a good basis for rapid prototyping of advanced DSP algorithms.

Index Terms—H.264 decoder, Plasma RISC, Xilinx FPGA,
Java.

I. INTRODUCTION

H.264/AVC (Advanced Video Coding: MPEG-4 Part 10) is
the state-of-art standard video codec, which is recommended
by both ITU-T and ISO/IEC [4], [6], [8], [10]. Designed to be
flexible and network-friendly, it is expected to dominate the
market of multimedia devices and services in the near future.
The most notable areas of H.264 use are the Digital Video
Broadcasting (DVB), 3GPP mobile communication, and Blu-
ray Disc.

Adaptability to various applications and better bandwidth
usage, which are advantages of H.264 over its predecessors,
especially over MPEG-2 Video (H.262), have been achieved
at the price of higher complexity and greater memory require-
ments. Although the main principles of hybrid video coding
are still used, the subalgorithms: transform, prediction, motion
compensation, as well as entropy coding have been revised and
given new options, which improve effectiveness but decrease
efficiency. Significant modifications of both bitstream format
and decoding process limit reusing of existing software and
hardware, so that new infrastructure needs to be created.

Since 2003, when the first version of the standard had
been published, many H.264-related products have been is-
sued, like encoding engines, decoder chips, software players,
and bitstream analyzers. However, there are still reasons for
developing new solutions, because the existing ones often do
not follow standard’s nuances or recent extensions, or have
deficiencies related to speed or power consumption.

As working in this field is interesting from both engineering
and commercial points of view, the authors have undertaken
the task of developing a real-time hardware H.264 decoder.

Its novel architecture has to be not only computationally
efficient but also flexible from the design point of view.
Namely, modularization and reconfigurability should guaran-
tee that: i) future extensions of the standard can easily be
incorporated into the system without entirely redesigning it,
ii) speed can be traded off for resource consumption, iii) the
digital circuit can be customized and optimized in order to
satisfy application requirements without wasting resources. An
additional decision was to widely use free-of-charge and open-
source development tools in order to keep investments small
and to be able to customize the toolset in accordance with
needs.

Because so far the team mainly specialized in speech pro-
cessing, see e.g. [7] or [9], in order to gain more konwledge,
they have split work between two directions. One is to develop
from scratch a reliable object-oriented model of the decoder
and implement it in software. The second one is to use the
resulting code, after testing, to design hardware modules,
which can be functionally verified based on data generated
using the software.

In order to achieve high productivity, the Java platform
has been used in object-oriented development. In addition to
preventing errors that are common in C programming, it was
expected to facilitate building a consistent development toolset
adjusted to our needs.

The paper presents the initial results of the project, which
are related to both software and hardware, and justifies main
design decision the team made. After characterizing H.264
briefly, we describe both Java code organization and the
corresponding hardware architecture of the decoder. Then the
Plasma-NTLab processor is presented, which has been devel-
oped in order to supervise the prototype platform, especially
hardware decoding. Finally, FPGA designs of some modules
that speed up the decoding algorithm are shown. In particular,
the transform unit is compared with a known solution, in order
to show that our methodology brings benefits.

II. H.264 CODEC

The general scheme of the H.264 codec is shown in Fig. 1.
Like the older standards, it is a hybrid algorithm that uses both
transform coding and motion-compensated predictive coding
to remove spatial as well as temporal redundancy of video

Deblocking Filter

Motion Estimation

Motion
Compensation

Transform
Scaling

Quantization

Scaling
Inv. transform

Entropy Coding

Input
video signal

Current
Reference

Frame Buffer
Intra Prediction Output

bitstream

Input bitstream

ENCODER

DECODER

Deblocking Filter

Motion Estimation

Motion
Compensation

Dequantization
Scaling

Inv. transform

Entropy
Decoding

Output video signal

Current/Reference
Frame Buffer

Intra Prediction

Fig. 1. The general scheme of the H.264 codec.

signals. Better flexibility and compression efficiency have been
achieved by only improving subalgorithms.

Fine-grained macroblock partitioning into smaller units and
quarter-pixel accuracy allow motion estimation/compensation
to be more effective. Estimation accuracy is further improved
by employing an in-loop deblocking filter that removes the
blocking artifact before using a frame for prediction. Re-
duction of temporal redundancy is improved by allowing
multiple (up to 16) reference frames to be used and by making
bidirectional prediction possible, in which future frames can
be referenced in addition to past ones. Removing spatial
dependencies among pixels by a decorrelating transform can
be supported with multi-mode intra prediction of a block using
adjacent fragments of the same frame. Moreover, transform
size can be switched between 4× 4 and 8× 8 in order to best
fit macroblock contents. Finally, more effective methods of
entropy coding have been employed: Context-based Adaptive
Binary Arithmetic Coding (CABAC) and Context-Adaptive
Variable Length Coding (CAVLC). Specific needs of studio
and wireless applications have been satisfied by incorporating
Fidelity Range Extensions (FRExt) and Scalable Video Coding
(SVC), respectively, into the standard.

Thus, the encoder, which is equipped with a lot of switches,
allows the output bitstream to be customized in order to best
fit a particular usage of the codec. This has been rational-
ized by defining several H.264 profiles, which correspond to
various trade-offs among quality, bitrate, and computational
requirements.

Owing to these advanced techniques and high flexibility,
H.264 offers even two times better compression efficiency than
MPEG-2 Video and is much better suited to contemporary
applications. However, decoding can require even four times
more operations, even though in the new standard, the Discrete
Cosine Transform (DCT) has been replaced with efficient
multiplierless approximations.

Because of its complexity and little connection to previous

standards, implementing H.264 is not trivial, especially if
a small and energy efficient device is expected to operate in
real time. Thus, there is a great interest in novel solutions in
this field.

III. SOFTWARE PROTOTYPE

Our review of the existing support for implementing H.264
has shown that a lot of information is accessible but they are
distributed among papers, reports, web pages, etc. Moreover,
they usually are not conveyed readily, so that there are no
reliable implementation patterns and ready-to-use high-quality
source code. Especially, the standard documents and the
reference software [1] are very unclear and very difficult to
understand even for experienced developers. Thus we decided
to design from-the-scratch a software H.264 decoder that does
not necessarily work with real-time performance but forms
a clear, well-documented foundation for developing and than
testing hardware modules.

Such objectives has motivated us to employ the Java plat-
form instead of the C or C++ languages, which are com-
monly used for implementing DSP algorithms. The former
is undoubtedly slower but greatly increases productivity and
code quality. Its strict type-control prevents many errors that
can easily be made when using C, some other bugs become
easy to detect, and finally, the language helps programmers
with object-oriented design. Moreover, there is no need for
combining different open-source tools/libraries or for relaying
on platform-dependent commercial products. The standard
Java packages provide all that is necessary for creating ad-
vanced GUI- and network-based applications, which work
on both Windows and Linux. A rich set of OS-independent
development tools can be downloaded as a single bundle,
including the sophisticated RAD development environment,
NetBeans, and JavaDoc, a simple means for generating well-
organized documentation from code comments.

A class diagram of our object-oriented model of the H.264
decoder is shown in Fig. 2. It comprises about 50 classes,
which represent data and subprocesses related to decoding.
They have been designed in such a way that it is easy to
identify objects and methods with hardware modules, registers,
or state changes.

For most of classes, it is possible to strictly determine the
number of instances. Knowing the latter allows objects to be
preallocated as static fields and to exist continuously during
program execution. This significantly reduces computational
load related to memory management and garbage collection.
It seems that using this technique is crucial for developing
a Java-based H.264 decoder that works in real time.

Another conclusion, which does not directly result from
the standard document, is that most of operations can be per-
formed without explicit integer multiplications. The latter can
widely be replaced with binary shifts, possibly supplemented
by additions. As to data types, 16 bits (including sign) seem
sufficient to store variables related to decoding, but in some
cases, auxiliary results need 32 bits.

5. PROJECT RESULTS

Slice

DecodedReferencePictureMarking

ReferencePictureListReordering

IndexScanner4x4BlockPlane

SubmacroblockPrediction

IndexScannerBlockPlane

IndexScannerMacroblock

PictureParameterQueue

NeighbouringBlockInfo

MacroblockStructure

PredictionWeightTable

IntraPredictionMode ResidualBlock

IntraPredictor

IndexScanMode

PictureParameters

MacroblockQueue

MacroblockReport ParsingException

Plane

PlaneConstructor

MacroblockType

PredictionModeBlockStructure

SequenceQueue

VUIParameters

AccessMode

InterPredictor

IndexScanner

Macroblock

ScalingMode

Predictor

Transform

ScalingList

Prediction

Scaler

Sequence

Direction

NALType

Reporter

Picture ParserVLC

Type

NAL

Fig.2 – UML diagram for the object model of H.264 decoder.
Fig. 2. UML class diagram of the Java-based H.264 decoder.

Internal variables of decoding pipelines do not occupy much
memory. Quantization tables and sample buffers for transform
and prediction purposes take up the most space, yet it seems
possible to incorporate them into a chip. The main problem is
in storing reference frames for inter-prediction, which requires
large out-of-chip memory. Some of known decoders require
encoders to limit the number of reference frames depending
on video resolution and accessible storage space, and we will
probably employ this approach in our chip.

Even though the software decoder is currently developed
only in order to help engineers with implementing the H.264
decoder in hardware, it can become a stand-alone project.
Our results suggests that for low resolution videos, real-time
performance can be achieved on current PCs even without
rewriting the code in the C language.

IV. DIAGNOSTIC TOOLS

The software decoder is a foundation of our platform-
independent diagnostic tool. Being written in Java, the pro-
gram works in any operating system equipped in the JVM,
especially on Linux. It allows for interactively testing the
decoder against errors and for preparing data for verification of
digital modules. This is possible via two main functionalities,
which are GUI-controlled using the windows of Figs. 3 and 4.
Firstly, H.264 bitstreams can be analyzed and restructured, in
order to identify and extract input data that cause the decoder
to fail. Secondly, correctness of decoding of a single frame
can be examined both visually and by following the dataflow
step by step.

The latter is based on a quite advanced reporting mecha-
nism, which collects data in a synthetic form, so that they can
be both displayed on screen and exported to verification tools.

Fig. 3. Stream analysis window of the diagnostic tool.

The mechanism has been designed in a way that allows it to be
easily incorporated into the decoder, without refactoring and
messing up the essential code.

Similar commercial tools are accessible, e.g. H264Visa [2],
but they are quite expensive, work only on Windows, and it is
impossible to customize them as desired. Especially, they offer
only limited access to the internals of the decoding pipeline,
and the data inspected via GUI cannot be efficiently translated
to a form suitable for verification.

On the other hand, our reporting and verification tools can
be extended as necessary. Especially, filters are to be developed
that allow interesting information to be quickly extracted. An-
other functionality under development is automatic detection
and extraction of erroneously decoded frames in a long stream.
Nevertheless, in most cases, interactive testing the program
supports is sufficient.

Fig. 4. Frame analysis window of the diagnostic tool.

Host Processor
(Plasma CPU)

USB
Controller

Bit(byte)
stream

USB
2.0

Plasma

bus

Adder
Curent
frame

memory

Plasma
memory

Reference
frame

memory

Video
out

F
I
F
O

Ctrl Unit

Intra
predictor

F
I
F
O

Ctrl Unit

Inter
predictor

F
I
F
O

Ctrl Unit

VLC
decoder

F
I
F
O

Ctrl Unit

Inv.
Transform

&
Dequant.

Display
interface

Ctrl Unit

F
I
F
O

Ctrl Unit

Deblocking
filter

F
I
F
O

Syntax
parser

Ctrl Unit

Fig. 5. Decoder architecture.

V. DECODER ARCHITECTURE

The software allowed us to design the hardware architecture
of Fig. 5. One its part is a host CPU with a USB controller
and general-purpose memory. The second one is a H.264
decoding pipeline with dedicated memory for video frames.
Except both memories, all circuits have been implemented on
a single FPGA chip. After reaching a mature state, the design
is expected to be translated to the ASIC technology.

The Virtex-4 ML 401 Evaluation Platform was used in

our experiments. It is powered by the Xilinx XC4VLX25
FPGA device and supported by industry-standard peripherals,
interfaces, and connectors like DB15 VGA and USB. The main
clock source is a 100 MHz oscillator. The memory resources
comprise 64 MB DDR SDRAM, 1 MB ZBT SRAM, 32 MB
Compact Flash, 8 MB Flash, 4 kb IIC EEPROM, and 32 Mb
Platform Flash. They are connected to the FPGA via 32-bit
data buses. The main DDR SDRAM runs up to 266 MHz data
rate. Such a configuration is expected to be able to decode
videos of resolutions from 320 × 240 to 720 × 576 at the
rate of 30 frames per second. Both Baseline and Main H.264
profiles have to be supported.

The decoder has been made programatically reconfigurable.
Most of its modules have microprogrammable control units.
The host processor is responsible for loading up-to-date mi-
croprograms before starting a decoding job.

In our architecture, decoding modules are cascaded so
that they form a pipeline, in addition to being connected
to the system bus. The latter is used only to initialize and
roughly control block states. Data related to decoding are
passed from module to module via dedicated FIFO-buffered
connections between them, which are also responsible for
interblock synchronization. This is expected to greatly improve
concurrency. Firstly, it helps with avoiding bottlenecks caused
by sharing one bus by many devices. Secondly, a connection
can be made wide enough to pass an entire 4 × 4 or 8 × 8
block of samples at once, which allows them to be processed in
parallel. This is especially the case of transform and prediction.

The current prototype has only one pipeline which is
switched between luma and chroma processing. A future
approach we consider is to have three separate pipelines, which
allows decoding to be totally parallelized, but requires a lot of
FPGA resources.

VI. PLASMA-NTLAB PROCESSOR

The host processor we use is a customized version of the
Plasma CPU [3]. The latter is a simple RISC processor that
is accessible as a VHDL project (about 4000 lines of source
code + documentation), and thus can be modified and used
as a part of advanced SOPC solutions. Moreover, it is free
for commercial use, even though its features are sufficient to
a wide range of applications, especially those DSP-related.

Fig. 6 shows the block diagram of the processor. The 32-bit
address bus allows the core to handle large memory. Excessive
accesses to the latter can be avoided by wise use of 32 32-
bit general-purpose registers. Two additional special-purpose
registers for storing the results of both integer multiplication
and division allow the ALU to fully support fixed-point arith-
metic. At the VHDL level, it is possible to select between big-
and little-endian byte-ordering. A number of peripherals are
also accessible: UART, Interrupt Controller, Interrupt Timer,
SRAM Controller, Flash Controller, DDR SDRAM Controller,
and Ethernet MAC.

The instruction set is compatible with the MIPS I architec-
ture, e.g. with the MIPS R2000 CPU. From another point of
view, it is equivalent to the user-mode subset of the MIPS32

PC_next Mem_ctrl

Control

op
co

de

m
em

_s
ou

rc
e

im
m

_o
ut

a_
so

ur
ce

b_
so

ur
ce

c_
so

ur
ce

br
an

ch
_f

un
c

Bus_muxReg_bank

pc_source
rs_index
rt_index

rd_index

PC

reg_source
reg_target
reg_dest

d_write

Shifter

ALU

Mult

address

d_read

c_bus

b_bus

a_bus

mult_func

alu_func

shift_func

ad
dr

es
s

ad
dr

es
s_

ne
xt

by
te

_w
e

by
te

_w
e_

ne
xt

da
ta

_r
da

ta
_w Plasma bus

Fig. 6. The block diagram of the Plasma microprocessor.

instructions, except nonaligned data access and exceptions.
Two-stage command pipeline can be extended to three stages.

The Plasma core is not very resource consuming. If Xilinx
Spartan-3 XC3S1000 is the target platform, it takes up 1604
slices (20% of chip area) and can operate at the maximum
clock of 32–33 MHz. For Xilinx Virtex-4 XC4VLX25, is takes
up 1588 slices (14% chip area) whereas the maximum clock
is 64–67 MHz.

The original Plasma has been customized in order to match
the memory organization and I/O interfaces the development
board provides. Especially, a USB controller has been added,
which allows communications between the system and a PC
workstation. The testing environment runs on the latter, which
allows output of the prototype decoder to be verified after
sending a video stream to it. This required the system to be
extended in such a way that the CPU can control and monitor
stages of the decoding pipeline. The resulting microprocessor
architecture has been called the Plasma-NTLab CPU.

VII. FPGA DESIGN OF MODULES

Based on some parts of the software decoder, for which
code had been frozen after thorough tests, digital circuits have
been developed in FPGA. These are the NALU (Network
Abstraction Layer Unit) detector, bitstream parser, including
the VLC (Variable Length Coding) decoder, and residual
transform unit. Their schemes are shown in Figs. 7, 8, and
9, respectively.

The first module is responsible for determining NALU
boundaries in a bitstream, and to extract the contents units
carry. The contents form a higher-level bitstream, which is
analyzed by the parameter parser in order to decode syntax
elements. The related operations require only iterating binary
shifts and comparisons, which seems simple, but takes many
cycles of a general-purpose CPU.

Ctrl Unit

Rg 0Rg 1
Load

32

32

32

Shifter

Data_en

Detector
start_code_prefix

Rg

32

32

Next_NALU

Fig. 7. NALU detector.

32

FIFO

Rg 0Rg 1

Left-Shifter

31

Ctrl Unit
Load

32

Request
Ready

Accumulator

Carry

Prefix
Length

Detector

16 high-order Fixed
length

Right-Shifter 32 - k

k
32

u(v)
16 low-order

code - 1

codeNum

ue(v)
Parameter
Registers

se(v)-related
computationsVLC table

se(v)
me(v)

32

te(v)-related
computation

te(v)

Intra

Inter

Intra

Inter

5

Fig. 8. Parser unit.

In order to relieve the latter, only a fraction of the FPGA
chip area needs to be sacrificed. Namely, the NALU detector
of Fig. 7 use only 70 of 21504 Slice Flip-Flops, and 174 of
21504 LUTs that XC4VLX25 contains.

A much more complex part of the decoder is the transform
unit of Fig. 9, which computes an approximation of 2-
dimensional DCT. It needs quite large memory buffers for

Ctrl Unit

State/addr
counter

Adder/Substractor

Data_en

Rg

Data
memory
16x16

Temporary
memory
16x16

16

Left
shift
by 2

Rg

16

Fig. 9. Transform unit.

storing two 16 × 16 arrays of integers: one of input data and
one of auxiliary/output values.

The 4 × 4 version of our transform unit can be compared
with that of [5], where detailed data of a H.264 implementation
in FPGA are given. Two variants of the circuit are considered
therein, which we have also realized in our architecture. In
the first, calculations on vectors are performed element by
element, in order to conserve chip area. In the second, an entire
inner product of 4-element vectors is computed at once, which
requires replicated arithmetic blocks to work in parallel. The
synthesis results of Tables I and II show that our preliminary
designs are comparable to those by others, or even slightly
better in terms of chip area utilization.

This a proof that our software prototype well accomplishes
its task. It allows hardware engineers to quickly understand
what is expected and to construct digital circuits of good
quality, i.e. high performance is achieved at low resource
utilization.

The inter- and intra-prediction units are under development.
Finishing them will allow for assembling a first version of the
decoder

TABLE I
EVALUATION OF SINGLE-STAGE RESIDUAL TRANSFORM

Parameter Authors’ realization [5]
FPGA chip XC4VLX25-12 XC2VP7
Wordlength 16 16
Slice Flip-Flop 37 65
LUT 111 *
Slice 93 103
Max. clock [MHz] 200 150

VIII. CONCLUSION

Using Java routines as a basis for FPGA development has
turned out to be a good methodology for implementing such
an advanced DSP algorithm as the H.264 decoder. Clear and
well-documented code has allowed hardware specialists both

TABLE II
EVALUATION OF PARALLEL RESIDUAL TRANSFORM

Parameter Authors’ realization [5]
FPGA chip XC4VLX25-12 XC2VP7
Wordlength 16 16
Slice Flip-Flop - 257
LUT 1008 *
Slice 512 644
Max. critical delay [ns] 9.7 9.3

to design a flexible modularized architecture of the real-time
system and to rapidly prototype digital circuits that speed
up decoding subtasks. The advantage of high productivity is
accompanied by good quality of FPGA designs, which can
compete with the solutions by others, in terms of throughput
and resource utilization. Additionally, without the necessity
of looking for other tools, the Java platform has allowed us
to develop in parallel a multi-platform GUI-based diagnostic
application for test and verification purposes. On the other
hand, the simple Plasma RISC core, which is publicly available
as a VHDL source code, has served as a foundation for devel-
oping a customized host processor for controlling the hardware
decoding pipeline. We estimate that our project has reached
its half-way point. Further results are expected soon, which
will be the subjects of future papers.

ACKNOWLEDGMENT

This work was supported by Bialystok Technical University
under the grant W/WI/8/08.

REFERENCES

[1] “The H.264/AVC reference software (JM).” [Online]. Available:
http://iphome.hhi.de/suehring/tml/

[2] “H264Visa.” [Online]. Available: http://www.h264visa.com
[3] “Plasma CPU.” [Online]. Available: http://www.opencores.org/projects/

mips
[4] ITU-T and ISO/IEC, ITU-T Rec. H.264 Advanced video coding

for generic audiovisual services / ISO/IEC 14496-10 MPEG-4
AVC. Geneva: ITU, 2003. [Online]. Available: http://www.itu.int/rec/
T-REC-H.264

[5] R. Kordasiewicz and S. Shirani, “On hardware implementations of
DCT and quantization blocks for H.264/AVC,” J. VLSI Signal Process.,
vol. 47, pp. 189–199, 2007.

[6] S.-k. Kwon, A. Tamhankar, and K. R. Rao, “Overview of H.264/MPEG-
4 part 10,” J. Vis. Commun. Image R., vol. 17, pp. 186–216, 2006.

[7] M. Livshitz, M. Parfieniuk, and A. Petrovsky, “Wideband CELP coder
with multiband excitation and multilevel vector quantization based on
reconfigurable codebook,” Digital Signal Process. (OOO ”KBWP”,
Moscow, Russia), no. 2, pp. 20–35, 2005, in Russian.

[8] D. Marpe, T. Wiegand, and G. J. Sullivan, “The H.264/MPEG4 Ad-
vanced Video Coding standard and its applications,” IEEE Commun.
Mag., pp. 134–143, Aug. 2006.

[9] A. A. Petrovsky, A. Borowicz, M. Parfieniuk, and A. Petrovsky, “Warped
Discrete Fourier Transform in perceptual speech and audio processing,”
in Proc. X Symp. ”New Trends in Audio and Video”, Wroclaw, Poland,
16–18 Sep. 2004, pp. 143–152.

[10] I. E. G. Richardson, H.264 and MPEG-4 Video Compression. Wiley,
2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Mistral
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

