Are polynomial rings over nil rings Brown-McCoy radical?

Wen-Fong Ke
Based on a joint work with
M. A. Chebotar, P.-H. Lee and E. R. Puczyłowski

August 4, 2009

Köthe's Conjecture

There are many equivalent statements for Köthe's problem (1930) to have a positive answer.

- The sum of two nil left ideals is a nil left ideal.
- The 2×2 matrix ring over a nil ring is nil. (Krempa 1972)
- If N is a nil ring, then $N[x]$ is Jacobson radical. (Krempa 1972)
- A ring which is the sum of a nil subring and a nilpotent subring must be nil. (Ferrero and Puczyłowski 1989)

Brown-McCoy radical

- [Puczyłowski and Smoktunowicz, 1998] Let N be a nil ring. Then $N[x]$ is Brown-McCoy radical. This means that $N[x]$ cannot be homomorphically mapped onto a ring with identity.
- [Smoktunowicz, 2003]

Let R be a ring. If $R[x]$ is Jacobson radical, then $R[x, y]$ is Brown-McCoy radical.

Thus, if N is a nil ring such that $N[x, y]$ is not Brown-McCoy radical, then N is a counterexample to destroy the hope for a positive solution of Köthe's problem.

The question

Let N be a nil ring. Is $N[x, y]$ Brown-McCoy radical? Or can we find some homomorphic image of $N[x, y]$ which has an identity?

Here we claim that if N is nil such that $N[x, y]$ can be mapped homomorphically into some ring with identity, then N cannot has finite characteristic.

The Theorem

Theorem

If N is a nil ring with $p N=0$ for some prime p, then $N[x, y]$ cannot be homomorphically mapped onto a ring with identity.

Theorem

If N is a nil \mathbb{Z}_{p}-algebra, then $N[x, y]$ is Brown-McCoy radical.
Theorem (Puczyłowski and Smoktunowicz, 1998)
The polynomial ring $R[x]$ over a ring R is Brown-McCoy radical if, and only if, R cannot be homomorphically mapped onto a ring containing non-nilpotent central elements.

The case $p=2$

Let P be a ring with some non-nilpotent elements in its center Z. Let $\varphi: N[x] \rightarrow P$ be an epimorphism.
Let $u=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}$ such that $\varphi(u) \in Z$, and is non-nilpotent.
Put $u_{0}=a_{0}+a_{2} x^{2}+\cdots$ and $u_{1}=a_{1} x+a_{3} x^{3}+\cdots$.
So $u=u_{0}+u_{1}$. (Just put $a_{k}=0$ for $k>n$.)
Then $\varphi\left(u_{0}\right)+\varphi\left(u_{1}\right)=\varphi(u) \in Z$, and we have

$$
\begin{aligned}
\varphi(u)^{2} & =\left(\varphi\left(u_{0}\right)+\varphi\left(u_{1}\right)\right)^{2}=\varphi\left(u_{0}\right)^{2}+\varphi\left(u_{1}\right)^{2} \\
& =\varphi\left(u_{0}^{2}\right)+\varphi\left(u_{1}^{2}\right)=\varphi\left(u_{0}^{2}+u_{1}^{2}\right) .
\end{aligned}
$$

Note the form of the polynomial $u^{\prime}=u_{0}^{2}+u_{1}^{2}$:

$$
\begin{aligned}
u^{\prime}= & \left(a_{0}+a_{2} x^{2}+\cdots\right)^{2}+\left(a_{1} x+a_{3} x^{3}+\cdots\right)^{2} \\
= & a_{0}^{2}+\left(a_{0} a_{2}+a_{1}^{2}+a_{2} a_{0}\right) x^{2}+\cdots \\
& +\left(\sum_{i=0}^{2 k} a_{i} a_{2 k-i}\right) x^{2 k}+\cdots+a_{n}^{2} x^{2 n} .
\end{aligned}
$$

Let $x_{1}=x^{2}$ and $a_{k}^{\prime}=\sum_{i=0}^{2 k} a_{i} a_{2 k-i}$. Then

$$
u^{\prime}=a_{0}^{\prime}+a_{1}^{\prime} x_{1}+\cdots+a_{k}^{\prime} x_{1}^{k}+\cdots+a_{n}^{\prime} x_{1}^{n}
$$

Remember that $a_{n}^{\prime}=a_{n}^{2}$.

$$
u^{\prime}=a_{0}^{\prime}+a_{1}^{\prime} x_{1}+\cdots+a_{k}^{\prime} x_{1}^{k}+\cdots+a_{n}^{\prime} x_{1}^{n} \quad \text { with } \quad a_{n}^{\prime}=a_{n}^{2}
$$

Put $u_{0}^{\prime}=a_{0}^{\prime}+a_{2}^{\prime} x_{1}^{2}+\ldots$ and $u_{1}^{\prime}=a_{1}^{\prime} x_{1}+a_{3}^{\prime} x_{1}^{3}+\ldots$.
So $u^{\prime}=u_{0}^{\prime}+u_{1}^{\prime}$. (Again, put $a_{k}^{\prime}=0$ for $k>n$.)
Now, $\varphi\left(u_{0}^{\prime}\right)+\varphi\left(u_{1}^{\prime}\right)=\varphi\left(u^{\prime}\right)=\varphi(u)^{2} \in Z$ is non-nilpotent. So

$$
\varphi\left(u^{\prime 2}\right)=\varphi\left(u^{\prime}\right)^{2}=\varphi\left(u_{0}^{\prime}\right)^{2}+\varphi\left(u_{1}^{\prime}\right)^{2}=\varphi\left(u_{0}^{\prime 2}+u_{1}^{\prime 2}\right)
$$

Again, $u^{\prime \prime}=u_{0}^{\prime 2}+u_{1}^{\prime 2}$ is a polynomial of the form

$$
\begin{aligned}
u^{\prime \prime}=a_{0}^{\prime 2}+\left(a_{0}^{\prime} a_{2}^{\prime}\right. & \left.+a_{1}^{\prime 2}+a_{2}^{\prime} a_{0}^{\prime}\right) x_{1}^{2}+\cdots \\
& +\left(\sum_{i=0}^{2 k} a_{i}^{\prime} a_{2 k-i}^{\prime}\right) x_{1}^{2 k}+\cdots+a_{n}^{\prime 2} x_{1}^{2 n}
\end{aligned}
$$

Denote $x_{2}=x_{1}^{2}=x^{2^{2}}$ and $a_{k}^{\prime \prime}=\sum_{i=0}^{2 k} a_{i}^{\prime} a_{2 k-i}^{\prime}$. We get

$$
u^{\prime \prime}=a_{0}^{\prime \prime}+a_{1}^{\prime \prime} x_{2}+\cdots+a_{k}^{\prime \prime} x_{2}^{k}+\cdots+a_{n}^{\prime \prime} x_{2}^{n}
$$

$$
u^{\prime \prime}=a_{0}^{\prime \prime}+a_{1}^{\prime \prime} x_{2}+\cdots+a_{k}^{\prime \prime} x_{2}^{k}+\cdots+a_{n}^{\prime \prime} x_{2}^{n} \quad \text { with } \quad a_{n}^{\prime \prime}=a_{n}^{\prime 2}=a_{n}^{2^{2}}
$$

Continuing in this manner ℓ times, we get a non-nilpotent element $\varphi\left(u^{(\ell)}\right)=\varphi(u)^{2^{\ell}} \in Z$, where $u^{(\ell)}$ is an element of the form

$$
u^{(\ell)}=a_{0}^{(\ell)}+a_{1}^{(\ell)} x_{\ell}+\cdots+a_{k}^{(\ell)} x_{\ell}^{k}+\cdots+a_{n}^{(\ell)} x_{\ell}^{n},
$$

with $x_{\ell}=x^{2^{\ell}}$ and $a_{n}^{(\ell)}=a_{n}^{2^{\ell}}$.
When ℓ is large enough, $a_{n}^{(\ell)}=0$ since N is nil, and $u^{(\ell)}$ has at least one term less than u.

We can continue in this manner, and for sufficiently large m, we would have $u^{(m)}=0$, and $\varphi\left(u^{(m)}\right)$ is a non-nilpotent central element in P, a contradiction.

Hence the theorem holds for $p=2$.

The general case

Here is the key lemma to the general case.

Lemma

Let A be a \mathbb{Z}_{p}-algebra and $b_{0}, b_{1}, \cdots, b_{n} \in A$ such that
$b=b_{0}+b_{1}+\cdots+b_{n}$ is a central element of A.
Then $b^{p}=\sum_{i_{0}+i_{1}+\cdots+i_{p} \equiv 0(\bmod p)} b_{i_{1}} b_{i_{1}} \ldots b_{i_{p}}$.

Proof. For $1 \leq i \leq p-1$, let $a_{i}=\sum_{j \equiv i(\bmod p)} b_{j}$.
Then $b=a_{0}+a_{1}+\cdots a_{p-1}$, and it suffices to show that
$b^{p}=\sum_{i_{1}+i_{2}+\cdots+i_{p} \equiv 0(\bmod p)} a_{i_{1}} a_{i_{2}} \cdots a_{i_{p}}$.

Regard A as a \mathbb{Z}_{p}-subalgebra of $A^{\#}[G]$, where
$A^{\#}$ is A with identity adjoined, and $G=\langle g\rangle$ is the cyclic group of order p.
Let $u=a_{0}+a_{1} g+\cdots+a_{p-1} g^{p-1}$. Then
$u^{p}=c_{0}+c_{1} g+\cdots+c_{p-1} g^{p-1}$ where each c_{j} is the sum of elements of the form $a_{i_{1}} a_{i_{2}} \cdots a_{i_{p}}$ with $i_{1}+i_{2}+\cdots+i_{p} \equiv j(\bmod p)$.
Let

$$
v=b-u=a_{1}(1-g)+\cdots+a_{p-1}\left(1-g^{p-1}\right)=w(1-g)
$$

where

$$
w=a_{1}+a_{2}(1+g)+\cdots+a_{p-1}\left(1+g+\cdots+g^{p-2}\right)
$$

Since $1-g$ is a central element of $A^{\#}[G]$, we have

$$
v^{p}=(w(1-g))^{p}=w^{p}(1-g)^{p}=w^{p}\left(1-g^{p}\right)=0 .
$$

As $u=b-v$ and b is a central element of $A^{\#}[G]$, we have

$$
u^{p}=(b-v)^{p}=b^{p}-v^{p}=b^{p} \in A .
$$

We get $c_{0}+c_{1} g+\cdots+c_{p-1} g^{p-1}=u^{p}$ is an element in A, and so, $c_{1}=c_{2}=\cdots=c_{p-1}=0$.

Now, $b^{p}=c_{0}=\sum_{i_{1}+i_{2}+\cdots+i_{p} \equiv 0(\bmod p)} a_{i_{1}} a_{i_{2}} \cdots a_{i_{p}}$ as claimed.

Here is the theorem to be proved.

Theorem

Let N be a nil \mathbb{Z}_{p}-algebra. Then $N[x]$ cannot be homomorphically mapped onto a ring with non-nilpotent central elements.

Proof. Assume the contrary. Let n be the smallest integer such that some polynomial $u=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in N[x]$ of degree n can be mapped via a homomorphism onto a non-nilpotent central element of some ring. Also assume that the nilpotency index k of a_{n} is the smallest among such polynomials.

Let $f: N[x] \rightarrow P$ be such a homomorphism, where P is a ring with non-nilpotent central element.

Set $b=f(u)$ and $b_{i}=f\left(a_{i} x^{i}\right)$ for $i=0,1, \cdots, n$.
Then $b=b_{0}+b_{1}+\cdots+b_{n}$ is a central element of P, and so $b^{p}=f(v)$, where

$$
v=\sum_{i_{1}+i_{2}+\cdots+i_{p} \equiv 0(\bmod p)} a_{i_{1}} a_{i_{2}} \cdots a_{i_{p}} x^{i_{1}+i_{2}+\cdots+i_{p}}
$$

Write $v=c_{0}+c_{1} x^{p}+c_{2} x^{2 p}+\cdots+c_{n} x^{n p}, c_{i} \in N$.
Set $w=c_{0}+c_{1} x+c_{2} x^{2}+\cdots+c_{n} x^{n}$.
Note that $c_{n}=a_{n}^{p}$.
Define $g: N[x] \rightarrow N[x] ; r_{0}+r_{1} x+\cdots r_{k} x^{k} \mapsto r_{0}+r_{1} x^{p}+\cdots r_{k} x^{p k}$.
Then $g(w)=v$.

Now $f \circ g: N[x] \rightarrow P$ is a homomorphism.
Also, w is a polynomial in $N[x]$ of degree n such that $f(g(w))=f(v)=b^{p}$ is a non-nilpotent central element of P. However, the nilpotency index of $c_{n}=a_{n}^{p}$ is $\leq[k / p]+1<k$, a contradiction. This completes the proof.

Questions

1. Maybe it is easier to solve Köthe's problem in finite characteristic?
2. Is $N[x, y, z]$ Brown-McCoy radical when N is a nil ring?
3. How about more variables?
