Primitive Near-rings

Gerhard Wendt

Institut für Algebra

Johannes Kepler Universität Linz

Near-rings

Definition: A near-ring is a set N together with two binary operations "+" and "·" such that (N, +) is a **group (not necessarily abelian)**, (N, \cdot) is a semigroup and $\forall n_1, n_2, n_3 \in N$: $(n_1+n_2) \cdot n_3 = n_1 \cdot n_3 + n_2 \cdot n_3$ (right **distributivity law**).

A near-ring $(N, +, \cdot)$ is said to be zero symmetric iff $\forall n \in N : n \cdot 0 = 0$. All our near-rings will be zero symmetric.

Natural examples: The zero preserving functions of a group under pointwise addition and function composition.

Definition 1. Let (N, +, *) be a near-ring and $(\Gamma, +)$ be a group. Γ is called an N-group iff there exists a multiplication \odot such that:

(1) $\forall \gamma \in \Gamma \forall n_1, n_2 \in N : (n_1 + n_2) \odot \gamma = n_1 \odot \gamma + n_2 \odot \gamma$

(2) $\forall \gamma \in \Gamma \forall n_1, n_2 \in N : (n_1 * n_2) \odot \gamma = n_1 \odot (n_2 \odot \gamma).$

N-groups

Let Γ be an $N\text{-}\mathsf{group}$ and let S be a normal subgroup of $\Gamma.$

S is called an N-ideal of Γ if $\forall n \in N \ \forall \gamma \in \Gamma \ \forall s \in S$: $n(\gamma + s) - n\gamma \in S.$

An N-group Γ is called simple if there do not exist non-trivial N-ideals.

 Γ is called strongly monogenic if $N\Gamma \neq \{0\}$ and for all $\gamma \in \Gamma$ either $N\gamma = \Gamma$ or $N\gamma = \{0\}$.

N-groups which are simple and strongly monogenic are called N-groups of type 1.

N-groups which are strongly monogenic and do not contain non-trivial N-subgroups are called of type 2 (type 2 implies type 1).

We define $(0 : \Gamma) := \{n \in N | \forall \gamma \in \Gamma : n\gamma = 0\}$. If $(0 : \Gamma) = \{0\}$ then Γ is called faithful.

Primitive Near-rings

Definition (Jacobson Radical of type 1):

 $J_1(N) := \bigcap_{\Gamma \text{ of type } 1} (0 : \Gamma)$

Definition: $J_2(N) := \bigcap_{\Gamma \text{ of type } 2} (0 : \Gamma)$

Definition: The N near-ring is 1-primitive (2-primitive) if there exists a faithfulf N-group of type 1 (type 2).

Semisimple Near-rings: $N/J_1(N)$ is called a 1-semisimple near-ring. It is a subdirect product of 1-primitive near-rings (similarly for 2-semisimple near-rings).

In case N has an identity and the descending chain condition on N-subgroups of (N, +), then the concept of being 2-primitive and 1-primitive and also the radicals coincide. In contrast to (finite) rings, primitive nearrings do not necessarily have an identity.

Primitive near-rings with identity can be described very satisfying as so called centralizer near-rings. So to say, these centralizer near-rings are the near-ring counterparts to matrix rings over fields in ring theory. If the near-rings do not have an identity, then other concepts are necessary to describe them efficiently.

Centralizer Near-Rings

Definition 2. Let $(\Gamma, +)$ be a group and $\emptyset \neq S \subseteq$ End $(\Gamma, +)$. $M_S(\Gamma) := \{f : \Gamma \mapsto \Gamma \mid f(0) = 0 \text{ and } \forall s \in$ $S : f \circ s = s \circ f\}$. $(M_S(\Gamma), +, \circ)$ is a near-ring, called a centralizer near-ring.

Theorem 3. (1970's) Every zero symmetric near-ring with identity is (isomorphic to) a centralizer near-ring $M_S(\Gamma)$, for a suitable group Γ and $S \subseteq \text{End}(\Gamma, +)$.

Theorem 4. (Betsch, 1971) Let N be a zero symmetric (2-)primitive near-ring (not a ring) with identity. Then N is dense in some centralizer near-ring $M_G(\Gamma)$, where G is a fixedpointfree automorphism group of the group Γ .

In the finite case density means equality.

Sandwich Centralizer Near-Rings

Definition 5. Let $(\Gamma, +)$ be a group, $X \subseteq \Gamma$ a subset of Γ containing the zero 0 of $(\Gamma, +)$ and $\phi : \Gamma \longrightarrow X$ a map such that $\phi(0) = 0$. Define the following operation \circ' on Γ^X : $f \circ' g := f \circ \phi \circ g$ for $f, g \in \Gamma^X$. Then $(\Gamma^X, +, \circ')$ is a (sandwich) near-ring, denoted by $M(X, \Gamma, \phi)$.

Combination of the concepts of centralizer near-rings and sandwich near-rings yields a new class of near-rings, which we call *sandwich centralizer near-rings*.

Definition 6. (Sandwich Centralizer Near-Rings)

Let $\emptyset \neq S \subseteq \text{End}(\Gamma, +)$ such that $\forall s \in S \ \forall \gamma \in \Gamma$: $\phi \circ s(\gamma) = s \circ \phi(\gamma)$ and such that $S(X) \subseteq X$. Then $M_0(X, \Gamma, \phi, S) := \{f : X \longrightarrow \Gamma \mid f(0) = 0 \text{ and } \forall s \in S \ \forall x \in X : f(s(x)) = s(f(x))\}$ is a zero symmetric subnear-ring of $M(X, \Gamma, \phi)$.

Near-Rings with right identity

Theorem 7. Let N be a near-ring. Then the following are equivalent:

- (1) N is a zero symmetric near-ring with right identity.
- (2) There exists a group $(\Gamma, +)$, a subset X of Γ with $0 \in X$, there exists a non-empty subset $S \subseteq \text{End}(\Gamma, +)$ with $S(X) \subseteq X$, and there exists a function $\phi : \Gamma \longrightarrow X$ with $\phi(0) = 0$, $\phi \mid_X = id$ and $\phi \circ s(\gamma) = s \circ \phi(\gamma)$ for all $s \in S$ and $\gamma \in \Gamma$, such that $N \cong M_0(X, \Gamma, \phi, S)$.

Important classes of near-rings with multiplicative right identity are: planar near-rings, **(finite) primitive nearrings**, (finite) semi-simple near-rings, any (finite) nearring not entirely consisting of zero-divisors. In general, those near-rings do not have an identity. **Theorem 8.** Let *M* be a zero symmetric near-ring which is not a ring. Then the following are equivalent:

- (1) M is 1-primitive and has a right identity.
- (2) There exist:
 - a. a group (N, +) and a subset X of N containing zero and $|X| \ge 2$,
 - b. $S \leq \operatorname{Aut}(N, +)$, with $S(X) \subseteq X$ and S acting without fixed points on X,
 - c. a function $\phi : N \longrightarrow X$ with $\phi \mid_X = id$, $\phi(0) = 0$ and $\phi \circ s = s \circ \phi$ for all $s \in S$,

such that M is isomorphic to a subnear-ring M_S of the sandwich centralizer near-ring $M_0(X, N, \phi, S)$. Furthermore,

- d. for any natural number k the following holds: $\forall x_1, \ldots, x_k \in X \setminus \{0\}, S(x_i) \neq S(x_j)$ for $i \neq j$ $\forall n_1, \ldots, n_k \in N, \exists f \in M_S, \forall i \in \{1, \ldots, k\} : f(x_i) = n_i.$
- e. (N, +) contains no non-trivial normal subgroup (U, +) with the property that for all $u \in U$ and all $n \in N$, there exists an $s \in S$ such that $\phi(n+u) =$ $s(\phi(n))$ and $s(n_1) - n_1 \in U$ for all $n_1 \in N$.

Some comments and open cases

In the finite case $M \cong M_0(X, N, \phi, S)$.

The Theorem of the last slide can be easily adapted to 1-primitive near-rings being also 2-primitive.

For primitive near-rings which do not even have a right identity, there is still no satisfying classification available (there exists concepts similar to sandwich centralizer near-rings).

There also exist so called 0-primitive near-rings, corresponding to near-rings having faithful N-groups of type 0 (a weaker condition as being of type 1). For such near-rings no density-like theorems exist at all at the moment.