# Quasi-duo rings

Jerzy Matczuk

Warsaw, August 2009

An associative ring R with unity is called right (left) quasi-duo if every maximal right (left) ideal of R is two-sided.

Properties:

• R is right quasi-duo iff R/J(R) is such.

Properties:

- R is right quasi-duo iff R/J(R) is such.
- If R is right quasi-duo semiprimitive ring, then R is a subdirect product of division rings.

Properties:

- R is right quasi-duo iff R/J(R) is such.
- If R is right quasi-duo semiprimitive ring, then R is a subdirect product of division rings.
- (Lam, Dugas) When *R* is a subdirect product of finite number of division rings then *R* is quasi-duo.

# Question

• Which rings can be represented as subdirect products of division rings, and when is such a subdirect product right quasi-duo?

# Question

- Which rings can be represented as subdirect products of division rings, and when is such a subdirect product right quasi-duo?
- Does there exist a right quasi-duo ring which is not left quasi-duo?

# Question

- Which rings can be represented as subdirect products of division rings, and when is such a subdirect product right quasi-duo?
- Does there exist a right quasi-duo ring which is not left quasi-duo?
- Does there exist a left primitive, right quasi-duo ring that is not a division ring?

For a ring R with an endomorphism  $\tau$ , the following conditions are equivalent:

•  $R[x; \tau]$  is a right (left) quasi-duo ring;

For a ring R with an endomorphism  $\tau$ , the following conditions are equivalent:

- $R[x; \tau]$  is a right (left) quasi-duo ring;
- **2** R and  $\overline{R}[x; \tau]$  are right (left) quasi-duo rings;

For a ring R with an endomorphism  $\tau$ , the following conditions are equivalent:

- $R[x; \tau]$  is a right (left) quasi-duo ring;
- **2** R and  $\overline{R}[x; \tau]$  are right (left) quasi-duo rings;
- S R and  $A(\bar{R}, \tau)[x; \tau]$  are right (left) quasi-duo rings;

For a ring R with an endomorphism  $\tau$ , the following conditions are equivalent:

- $R[x; \tau]$  is a right (left) quasi-duo ring;
- **2** R and  $\overline{R}[x; \tau]$  are right (left) quasi-duo rings;
- Solution R and  $A(\bar{R}, \tau)[x; \tau]$  are right (left) quasi-duo rings;

The following conditions hold:

- *R* is right (left) quasi-duo and  $J(R[x; \tau]) = (J(R) \cap N(R)) + N(R)[x; \tau]x;$
- N(R) is a τ-stable ideal of R, the factor ring R/N(R) is commutative and the endomorphism τ induces identity on R/N(R).

Suppose that  $\sigma$  is an automorphism of R and either R is one-sided noetherian or  $\sigma$  is of locally finite order. Then the following conditions are equivalent:

• *R*[*x*; *σ*] *is right quasi-duo;* 

Suppose that  $\sigma$  is an automorphism of R and either R is one-sided noetherian or  $\sigma$  is of locally finite order. Then the following conditions are equivalent:

- R[x; σ] is right quasi-duo;
- J(R[x; σ]) = N(R)[x; σ], where N(R) is the nil radical of R, R/N(R) is commutative and the automorphism of R/N(R) induced by σ is equal to id<sub>R/N(R)</sub>.
- $R[x;\sigma]/J(R[x;\sigma])$  is commutative.

The following conditions are equivalent:

 The skew Laurent polynomial ring R[x, x<sup>-1</sup>; σ] is right (left) quasi-duo;

The following conditions are equivalent:

- The skew Laurent polynomial ring R[x, x<sup>-1</sup>; σ] is right (left) quasi-duo;
- $J(R[x, x^{-1}; \sigma]) = N(R)[x, x^{-1}; \sigma], R/N(R)$  is commutative and the automorphism of R/N(R) induced by  $\sigma$  is equal  $id_{R/N(R)}$

# Corollary

The following conditions are equivalent:

• *R*[*x*] is right (left) quasi-duo;

# Corollary

The following conditions are equivalent:

- *R*[*x*] is right (left) quasi-duo;
- $R[x, x^{-1}]$  is right (left) quasi-duo;

### Corollary

The following conditions are equivalent:

- R[x] is right (left) quasi-duo;
- $R[x, x^{-1}]$  is right (left) quasi-duo;
- J(R[x]) = N(R)[x] and the factor ring R/N(R) is commutative, where N(R) denote the nil radical of R.



 there exists right quasi-duo skew polynomial ring R[x; σ] such that R[x; σ]/J(R[x; σ]) is not commutative;

- there exists right quasi-duo skew polynomial ring R[x; σ] such that R[x; σ]/J(R[x; σ]) is not commutative;
- there exists a ring R with an automorphism σ such that both R[x; σ] and R[x; σ<sup>-1</sup>] are right quasi-duo but R[x, x<sup>-1</sup>; σ] is not;

- there exists right quasi-duo skew polynomial ring R[x; σ] such that R[x; σ]/J(R[x; σ]) is not commutative;
- there exists a ring R with an automorphism σ such that both R[x; σ] and R[x; σ<sup>-1</sup>] are right quasi-duo but R[x, x<sup>-1</sup>; σ] is not;
- there exists a skew polynomial ring R[x; σ] which is right quasi-duo whereas R[x; σ<sup>-1</sup>] is not.

- there exists right quasi-duo skew polynomial ring R[x; σ] such that R[x; σ]/J(R[x; σ]) is not commutative;
- there exists a ring R with an automorphism σ such that both R[x; σ] and R[x; σ<sup>-1</sup>] are right quasi-duo but R[x, x<sup>-1</sup>; σ] is not;
- there exists a skew polynomial ring  $R[x; \sigma]$  which is right quasi-duo whereas  $R[x; \sigma^{-1}]$  is not.

### Problem

Give necessary and sufficient condition for an Ore extension  $R[x; \tau, \delta]$  to be right quasi-duo.

Let 
$$R = \bigoplus_{n \in \mathbb{Z}} R_n$$
 be a  $\mathbb{Z}$ -graded ring.

Let  $R = \bigoplus_{n \in \mathbb{Z}} R_n$  be a  $\mathbb{Z}$ -graded ring.

Let  $R = \bigoplus_{n \in \mathbb{Z}} R_n$  be a  $\mathbb{Z}$ -graded ring.

•  $\mathcal{A}$  denotes the set of all maximal right ideals M of R such that  $R_n \not\subseteq M$ , for some  $0 \neq n \in \mathbb{Z}$ 

•  $\mathcal{B}$  stands for the set of remaining maximal right ideals of R.

Let  $R = \bigoplus_{n \in \mathbb{Z}} R_n$  be a  $\mathbb{Z}$ -graded ring.

- $\mathcal{B}$  stands for the set of remaining maximal right ideals of R.
- Set  $A(R) = \bigcap_{M \in \mathcal{A}} M$  and  $B(R) = \bigcap_{M \in \mathcal{B}} M$ .

Let  $R = \bigoplus_{n \in \mathbb{Z}} R_n$  be a  $\mathbb{Z}$ -graded ring.

- $\mathcal{B}$  stands for the set of remaining maximal right ideals of R.
- Set  $A(R) = \bigcap_{M \in \mathcal{A}} M$  and  $B(R) = \bigcap_{M \in \mathcal{B}} M$ .
- $A_I = \{r \in R \mid R_n r \subseteq J(R), \text{ for every } 0 \neq n \in \mathbb{Z}\}.$

Let 
$$R = \bigoplus_{n \in \mathbb{Z}} R_n$$
 be a  $\mathbb{Z}$ -graded ring.

- $\mathcal{B}$  stands for the set of remaining maximal right ideals of R.
- Set  $A(R) = \bigcap_{M \in \mathcal{A}} M$  and  $B(R) = \bigcap_{M \in \mathcal{B}} M$ .

• 
$$A_I = \{r \in R \mid R_n r \subseteq J(R), \text{ for every } 0 \neq n \in \mathbb{Z}\}.$$

• 
$$A_r = \{r \in R \mid rR_n \subseteq J(R), \text{ for every } 0 \neq n \in \mathbb{Z}\}.$$

Let 
$$R = \bigoplus_{n \in \mathbb{Z}} R_n$$
 be a  $\mathbb{Z}$ -graded ring.

•  $\mathcal{A}$  denotes the set of all maximal right ideals M of R such that  $R_n \not\subseteq M$ , for some  $0 \neq n \in \mathbb{Z}$ 

•  $\mathcal{B}$  stands for the set of remaining maximal right ideals of R.

• Set  $A(R) = \bigcap_{M \in \mathcal{A}} M$  and  $B(R) = \bigcap_{M \in \mathcal{B}} M$ .

• 
$$A_I = \{r \in R \mid R_n r \subseteq J(R), \text{ for every } 0 \neq n \in \mathbb{Z}\}.$$

• 
$$A_r = \{r \in R \mid rR_n \subseteq J(R), \text{ for every } 0 \neq n \in \mathbb{Z}\}.$$

# Proposition

Let R be a  $\mathbb{Z}$ -graded ring. Then:

(i) 
$$A(R) = A_l = A_r$$

Let 
$$R = \bigoplus_{n \in \mathbb{Z}} R_n$$
 be a  $\mathbb{Z}$ -graded ring.

•  $\mathcal{A}$  denotes the set of all maximal right ideals M of R such that  $R_n \not\subseteq M$ , for some  $0 \neq n \in \mathbb{Z}$ 

•  $\mathcal{B}$  stands for the set of remaining maximal right ideals of R.

• Set  $A(R) = \bigcap_{M \in \mathcal{A}} M$  and  $B(R) = \bigcap_{M \in \mathcal{B}} M$ .

• 
$$A_I = \{r \in R \mid R_n r \subseteq J(R), \text{ for every } 0 \neq n \in \mathbb{Z}\}.$$

• 
$$A_r = \{r \in R \mid rR_n \subseteq J(R), \text{ for every } 0 \neq n \in \mathbb{Z}\}.$$

### Proposition

Let R be a  $\mathbb{Z}$ -graded ring. Then: (i)  $A(R) = A_I = A_r$ (ii)  $A(R) \cap (\bigoplus_{0 \neq n \in \mathbb{Z}} R_n) = J(R) \cap (\bigoplus_{0 \neq n \in \mathbb{Z}} R_n).$ 

A  $\mathbb{Z}$ -graded ring R is right (left) quasi-duo if and only if  $R_0$  is right (left) quasi-duo and R/A(R) is a commutative ring.

# Definition

We say that a ring R is left (right) quasi-duo if every left (right) maximal modular ideal of R is two-sided.

# Definition

We say that a ring R is left (right) quasi-duo if every left (right) maximal modular ideal of R is two-sided.

### Proposition

The class  $\mathcal{R}_{I}$  ( $\mathcal{R}_{r}$ ) of all left (right) quasi-duo rings forms a radical class.

### Definition

We say that a ring R is left (right) quasi-duo if every left (right) maximal modular ideal of R is two-sided.

### Proposition

The class  $\mathcal{R}_{I}$  ( $\mathcal{R}_{r}$ ) of all left (right) quasi-duo rings forms a radical class.

### Question

Is  $\mathcal{R}_l = \mathcal{R}_r$ ?

# Thanks for your attention