Radicals and classes of filial algebras

Marzena Filipowicz-Chomko mfilipowicz@kki.net.pl

Bialystok Technical University, Poland

Workshop Radicals of rings and related topics Warsaw, Poland

A (1) > A (2) > A (2) >

Outline

Outline

2 Semiprime algebras

3 Prime radical

Interstructure of left filial algebras over field F

Tzintzis radical

◆□ > ◆□ > ◆臣 > ◆臣 > ─

Э

- 2 Semiprime algebras
- 3 Prime radical
- 4 The structure of left filial algebras over field F
- 5 Tzintzis radical

・ロン ・回 と ・ ヨ と ・ ヨ と

臣

- 2 Semiprime algebras
- 3 Prime radical

4 The structure of left filial algebras over field F

5 Tzintzis radical

・ロン ・回 と ・ ヨ と ・ ヨ と

臣

2 Semiprime algebras

3 Prime radical

4 The structure of left filial algebras over field F

5 Tzintzis radical

・ロン ・回 と ・ ヨン ・ ヨン

E

- 2 Semiprime algebras
- 3 Prime radical
- 4 The structure of left filial algebras over field F

5 Tzintzis radical

・ロン ・回 と ・ ヨン ・ ヨン

E

Notation

- A an associative algebra over a commutative ring K with identity
- A* the algebra A with a unity adjoined
- $\beta(A)$ the prime radical of A
- $\mathcal{S}(A)$ the strongly regular radical of A
- Z the ring of integers
- Z_n the factor ring Z/nZ
- *I* ⊲ *A* (*I* <_{*I*} *A*, *I* <_{*r*} *A*) *I* is a *K*-ideal (a left *K*-ideal, a right *K*-ideal) of *A*
- $I_A(X) = \{a \in A \mid aX = 0\}$ left anihilator of X in algebra A.

Notation

- A an associative algebra over a commutative ring K with identity
- A^* the algebra A with a unity adjoined
- β(A) the prime radical of A
- $\mathcal{S}(A)$ the strongly regular radical of A
- Z the ring of integers
- Z_n the factor ring Z/nZ
- I ⊲ A (I <_I A, I <_r A) I is a K-ideal (a left K-ideal, a right K-ideal) of A
- $I_A(X) = \{a \in A \mid aX = 0\}$ left anihilator of X in algebra A.

Notation

- A an associative algebra over a commutative ring K with identity
- A^* the algebra A with a unity adjoined
- $\beta(A)$ the prime radical of A
- S(A) the strongly regular radical of A
- Z the ring of integers
- Z_n the factor ring Z/nZ
- I ⊲ A (I <_I A, I <_r A) I is a K-ideal (a left K-ideal, a right K-ideal) of A
- $I_A(X) = \{a \in A \mid aX = 0\}$ left anihilator of X in algebra A.

Notation

- A an associative algebra over a commutative ring K with identity
- A^* the algebra A with a unity adjoined
- $\beta(A)$ the prime radical of A
- $\mathcal{S}(A)$ the strongly regular radical of A
- Z the ring of integers
- Z_n the factor ring Z/nZ
- I ⊲ A (I <_I A, I <_r A) I is a K-ideal (a left K-ideal, a right K-ideal) of A
- $I_A(X) = \{a \in A \mid aX = 0\}$ left anihilator of X in algebra A.

Notation

- A an associative algebra over a commutative ring K with identity
- A^* the algebra A with a unity adjoined
- $\beta(A)$ the prime radical of A
- $\mathcal{S}(A)$ the strongly regular radical of A
- Z the ring of integers
- **Z**_n the factor ring **Z**/n**Z**
- I ⊲ A (I <_I A, I <_r A) I is a K-ideal (a left K-ideal, a right K-ideal) of A
- $I_A(X) = \{a \in A \mid aX = 0\}$ left anihilator of X in algebra A.

Notation

- A an associative algebra over a commutative ring K with identity
- A^* the algebra A with a unity adjoined
- $\beta(A)$ the prime radical of A
- $\mathcal{S}(A)$ the strongly regular radical of A
- Z the ring of integers
- \mathbf{Z}_n the factor ring $\mathbf{Z}/n\mathbf{Z}$
- I ⊲ A (I <_I A, I <_r A) I is a K-ideal (a left K-ideal, a right K-ideal) of A
- $l_A(X) = \{a \in A \mid aX = 0\}$ left anihilator of X in algebra A.

・ロ・ ・ 日・ ・ ヨ・ ・ 日・

Notation

- A an associative algebra over a commutative ring K with identity
- A^* the algebra A with a unity adjoined
- $\beta(A)$ the prime radical of A
- $\mathcal{S}(A)$ the strongly regular radical of A
- Z the ring of integers
- \mathbf{Z}_n the factor ring $\mathbf{Z}/n\mathbf{Z}$
- I ⊲ A (I <_I A, I <_r A) I is a K-ideal (a left K-ideal, a right K-ideal) of A
- $I_A(X) = \{a \in A \mid aX = 0\}$ left anihilator of X in algebra A.

(日) (종) (종) (종) (종)

Notation

- A an associative algebra over a commutative ring K with identity
- A^* the algebra A with a unity adjoined
- $\beta(A)$ the prime radical of A
- $\mathcal{S}(A)$ the strongly regular radical of A
- Z the ring of integers
- \mathbf{Z}_n the factor ring $\mathbf{Z}/n\mathbf{Z}$
- I ⊲ A (I <_I A, I <_r A) I is a K-ideal (a left K-ideal, a right K-ideal) of A
- $I_A(X) = \{a \in A \mid aX = 0\}$ left anihilator of X in algebra A.

・ロ・ ・ 日・ ・ ヨ・ ・ 日・

Definition

An algebra A is called filial if $I \triangleleft J \triangleleft A$ implies $I \triangleleft A$.

This terminology (for K = Z) was introduced by

Gertrude Ehrlich, Filial rings, Portugalia Mathematica, 1984

The problem of describing filial rings was posed by

F.A.Szász, Radicals of Rings, Akadémiai Kiadó, Budapest, 1974

Problem 9 Investigate the rings, in which the property to be an ideal is transitive. That is, an ideal of an ideal must always be an ideal of the ring.

() < </p>

Definition

An algebra A is called filial if $I \triangleleft J \triangleleft A$ implies $I \triangleleft A$.

This terminology (for K = Z) was introduced by

Gertrude Ehrlich, Filial rings, Portugalia Mathematica, 1984

The problem of describing filial rings was posed by

F.A.Szász, Radicals of Rings, Akadémiai Kiadó, Budapest, 1974

<u>Problem 9</u> Investigate the rings, in which the property to be an ideal is transitive. That is, an ideal of an ideal must always be an ideal of the ring.

Definition

An algebra A is called filial if $I \triangleleft J \triangleleft A$ implies $I \triangleleft A$.

This terminology (for K = Z) was introduced by

Gertrude Ehrlich, Filial rings, Portugalia Mathematica, 1984

The problem of describing filial rings was posed by

F.A.Szász, Radicals of Rings, Akadémiai Kiadó, Budapest, 1974

<u>Problem 9</u> Investigate the rings, in which the property to be an ideal is transitive. That is, an ideal of an ideal must always be an ideal of the ring.

() < </p>

Definition

An algebra A is called filial if $I \triangleleft J \triangleleft A$ implies $I \triangleleft A$.

This terminology (for K = Z) was introduced by

Gertrude Ehrlich, Filial rings, Portugalia Mathematica, 1984

The problem of describing filial rings was posed by

F.A.Szász, Radicals of Rings, Akadémiai Kiadó, Budapest, 1974

<u>Problem 9</u> Investigate the rings, in which the property to be an ideal is transitive. That is, an ideal of an ideal must always be an ideal of the ring.

Motivations

Fililal rings are

- analogous to *t*-groups (i.e. groups in which the relation of being a normal subgroup is transitive);
 E.Best and O.Taussky, *A class of groups*, Proc.Royal Irish Acad. of Sci., 1942
- generalize Hamiltonian ring (i.e. rings in which all subrings are ideals);
 R.Kruse, *Rings in which all subrings are ideals*, Canad. J.

Math, 1968

・ロト ・回ト ・ヨト ・ヨト

Motivations

Fililal rings are

- analogous to *t*-groups (i.e. groups in which the relation of being a normal subgroup is transitive);
 E.Best and O.Taussky, *A class of groups*, Proc.Royal Irish Acad. of Sci., 1942
- generalize Hamiltonian ring (i.e. rings in which all subrings are ideals);
 R.Kruse, *Rings in which all subrings are ideals*, Canad. J.

・ロト ・回ト ・ヨト ・ヨト

Motivations

Fililal rings are

- analogous to *t*-groups (i.e. groups in which the relation of being a normal subgroup is transitive);
 E.Best and O.Taussky, *A class of groups*, Proc.Royal Irish Acad. of Sci., 1942
- generalize Hamiltonian ring (i.e. rings in which all subrings are ideals);
 R.Kruse, *Rings in which all subrings are ideals*, Canad. J. Math, 1968

() < </p>

Examples (of filial rings)

(1) *H*-rings (Hamiltonian rings), for instance Z, Z_n

(2) Simple rings

(3) Von Neuman regular rings

 (4) Subidempotent rings ({R | ∀_{I⊲R}I = I²}) More generally, the rings {R | ∀_{I⊲R}RI = I³ = IR}

Examples (of filial rings)

(1) *H*-rings (Hamiltonian rings), for instance Z, Z_n

(2) Simple rings

(3) Von Neuman regular rings

(4) Subidempotent rings $(\{R \mid \forall_{I \triangleleft R} I = I^2\})$ More generally, the rings $\{R \mid \forall_{I \triangleleft R} RI = I^3 = IR\}$

Examples (of filial rings)

(1) *H*-rings (Hamiltonian rings), for instance Z, Z_n

- (2) Simple rings
- (3) Von Neuman regular rings

(4) Subidempotent rings $(\{R \mid \forall_{I \triangleleft R} I = I^2\})$ More generally, the rings $\{R \mid \forall_{I \triangleleft R} RI = I^3 = IR\}$

Examples (of filial rings)

(1) *H*-rings (Hamiltonian rings), for instance Z, Z_n

- (2) Simple rings
- (3) Von Neuman regular rings
- (4) Subidempotent rings $(\{R \mid \forall_{I \triangleleft R} I = I^2\})$ More generally, the rings $\{R \mid \forall_{I \triangleleft R} RI = I^3 = IR\}$

・ロッ ・回 ・ ・ ヨ ・ ・ ヨ ・ ・

Introduction

Continuations of studies of filial rings

(characterizations, examples, classifications of some subclasses)

- **R.R. Andruszkiewicz and E.R. Puczyłowski**, *On filial rings*, Portugal. Math. 45 (1988), pp. 139–149.
- **R.R. Andruszkiewicz**, *The classification of intergral domains in which the relation of being an ideal is transitive*, Comm. Algebra 31 (2003), pp. 2067–2093.
- **R.R. Andruszkiewicz and M. Sobolewska**, *Commutative reduced filial rings*, Algebra Discrete Math. 3 (2007), pp. 18–26.
- **R.R. Andruszkiewicz and K. Pryszczepko**, *A classification of commutative reduced filial rings*, submitted for publication in the Comm. Algebra.

Introduction

Continuations of studies of filial rings

(characterizations, examples, classifications of some subclasses)

- R.R. Andruszkiewicz and E.R. Puczyłowski, On filial rings, Portugal. Math. 45 (1988), pp. 139–149.
- **R.R. Andruszkiewicz**, *The classification of intergral domains in which the relation of being an ideal is transitive*, Comm. Algebra 31 (2003), pp. 2067–2093.
- R.R. Andruszkiewicz and M. Sobolewska, *Commutative reduced filial rings*, Algebra Discrete Math. 3 (2007), pp. 18–26.
- R.R. Andruszkiewicz and K. Pryszczepko, A classification of commutative reduced filial rings, submitted for publication in the Comm. Algebra.

Definition

An algebra A is called left filial (right filial) if $I <_I J <_I A$ $(I <_r J <_r A)$ implies $I <_I A (I <_r A)$.

Both filial and left filial rings were studied independently by

- A.D. Sands, *On ideals in over-rings*, Publ. Math. Debrecen 35 (1988), pp. 273–279.
- **S. Veldsman**, *Extensions and ideals of rings*, Publ. Math. Debrecen 38 (1991), pp. 297–309.
- **G. Tzintzis**, *An almost subidempotent radical property*, Acta Math. Hung. 49 (1987), pp. 173–184.

• **G. Tzintzis**, *A one-sided admissible ideal radical which is almost subidempotent*, Acta Math. Hungar. 49 (1987), pp. 307–314.

Definition

An algebra A is called left filial (right filial) if $I <_I J <_I A$ $(I <_r J <_r A)$ implies $I <_I A (I <_r A)$.

Both filial and left filial rings were studied independently by

- A.D. Sands, On ideals in over-rings, Publ. Math. Debrecen 35 (1988), pp. 273–279.
- **S. Veldsman**, *Extensions and ideals of rings*, Publ. Math. Debrecen 38 (1991), pp. 297–309.
- **G. Tzintzis**, *An almost subidempotent radical property*, Acta Math. Hung. 49 (1987), pp. 173–184.
- **G. Tzintzis**, *A one-sided admissible ideal radical which is almost subidempotent*, Acta Math. Hungar. 49 (1987), pp. 307–314.

Definition

An algebra A is called left filial (right filial) if $I <_I J <_I A$ $(I <_r J <_r A)$ implies $I <_I A (I <_r A)$.

Both filial and left filial rings were studied independently by

- A.D. Sands, On ideals in over-rings, Publ. Math. Debrecen 35 (1988), pp. 273–279.
- **S. Veldsman**, *Extensions and ideals of rings*, Publ. Math. Debrecen 38 (1991), pp. 297–309.
- **G. Tzintzis**, *An almost subidempotent radical property*, Acta Math. Hung. 49 (1987), pp. 173–184.
- **G. Tzintzis**, *A one-sided admissible ideal radical which is almost subidempotent*, Acta Math. Hungar. 49 (1987), pp. 307–314.

Introduction

Systematic studies of left filial rings and the relations between these rings and filial rings were started in paper

M. Filipowicz and E.R. Puczyłowski, *Left filial rings*, Algebra Colloq. 11 (2004), pp. 335–344.

and continued in

- M. Filipowicz and E.R. Puczylowski, On filial and left filial rings, Publ. Math. Debrecen 66 (2005), pp. 257–267.
- M. Filipowicz and E.R. Puczylowski, On the upper radical determined by filial rings, Acta Math. Hungar. 112 (2006), pp. 227–236.

Introduction

Systematic studies of left filial rings and the relations between these rings and filial rings were started in paper

M. Filipowicz and E.R. Puczyłowski, *Left filial rings*, Algebra Colloq. 11 (2004), pp. 335–344.

and continued in

- M. Filipowicz and E.R. Puczylowski, On filial and left filial rings, Publ. Math. Debrecen 66 (2005), pp. 257–267.
- M. Filipowicz and E.R. Puczylowski, On the upper radical determined by filial rings, Acta Math. Hungar. 112 (2006), pp. 227–236.

Introduction

Systematic studies of left filial rings and the relations between these rings and filial rings were started in paper

M. Filipowicz and E.R. Puczyłowski, *Left filial rings*, Algebra Colloq. 11 (2004), pp. 335–344.

and continued in

- M. Filipowicz and E.R. Puczylowski, On filial and left filial rings, Publ. Math. Debrecen 66 (2005), pp. 257–267.
- M. Filipowicz and E.R. Puczylowski, On the upper radical determined by filial rings, Acta Math. Hungar. 112 (2006), pp. 227–236.

Left filial algebras over a field were studied in

M. Filipowicz and E.R. Puczylowski, *The structure of left filial algebras over a field*, Taiwan. J. Math. 13/3 (2009), pp. 1017–1029.

・ロン ・回 と ・ ヨン ・ ヨン

Left filial algebras over a field were studied in

M. Filipowicz and E.R. Puczylowski, *The structure of left filial algebras over a field*, Taiwan. J. Math. 13/3 (2009), pp. 1017–1029.

Semiprime algebras over an arbitrary commutative ring *K* with identity

We get the following results

- Every semiprime left filial algebra is reduced.
- A reduced algebra A is left filial if and only if for every $a \in A$ $aA^* = aA^*a + Ka$.
- A prime algebra is left filial if and only if it is a commutative filial domain or a division algebra.

From the above results we obtain the following structure theorem describing left filial semiprime algebras.

(ロ) (同) (注) (注)
Semiprime algebras over an arbitrary commutative ring *K* with identity

We get the following results

- Every semiprime left filial algebra is reduced.
- A reduced algebra A is left filial if and only if for every a ∈ A aA^{*} = aA^{*}a + Ka.

• A prime algebra is left filial if and only if it is a commutative filial domain or a division algebra.

From the above results we obtain the following structure theorem describing left filial semiprime algebras.

Semiprime algebras over an arbitrary commutative ring *K* with identity

We get the following results

- Every semiprime left filial algebra is reduced.
- A reduced algebra A is left filial if and only if for every $a \in A$ $aA^* = aA^*a + Ka$.
- A prime algebra is left filial if and only if it is a commutative filial domain or a division algebra.

From the above results we obtain the following structure theorem describing left filial semiprime algebras.

Semiprime algebras over an arbitrary commutative ring K with identity

We get the following results

- Every semiprime left filial algebra is reduced.
- A reduced algebra A is left filial if and only if for every $a \in A$ $aA^* = aA^*a + Ka$.
- A prime algebra is left filial if and only if it is a commutative filial domain or a division algebra.

From the above results we obtain the following structure theorem describing left filial semiprime algebras.

・ロト ・同ト ・ヨト ・ヨト

Semiprime algebras over an arbitrary commutative ring K with identity

Recall that an algebra A is called strongly regular if for every $a \in A$ there is $x \in A$ such that $a = a^2 x$ (equivalently, $a = xa^2$).

Theorem

The following conditions on A are equivalent:

) A is semiprime and left filial.

 A contains an ideal I such that I is strongly regular and A/I is a commutative reduced filial algebra.

Semiprime algebras over an arbitrary commutative ring K with identity

Recall that an algebra A is called strongly regular if for every $a \in A$ there is $x \in A$ such that $a = a^2 x$ (equivalently, $a = xa^2$).

Theorem

The following conditions on A are equivalent:

(i) A is semiprime and left filial.

 (ii) A contains an ideal I such that I is strongly regular and A/I is a commutative reduced filial algebra.

(iii) A/S(A) is a commutative reduced filial algebra.

Semiprime algebras over an arbitrary commutative ring *K* with identity

Recall that an algebra A is called strongly regular if for every $a \in A$ there is $x \in A$ such that $a = a^2 x$ (equivalently, $a = xa^2$).

Theorem

The following conditions on A are equivalent:

- (i) A is semiprime and left filial.
- (ii) A contains an ideal I such that I is strongly regular and A/I is a commutative reduced filial algebra.
- (iii) A/S(A) is a commutative reduced filial algebra.

Semiprime algebras over an arbitrary commutative ring *K* with identity

Recall that an algebra A is called strongly regular if for every $a \in A$ there is $x \in A$ such that $a = a^2 x$ (equivalently, $a = xa^2$).

Theorem

The following conditions on A are equivalent:

- (i) A is semiprime and left filial.
- (ii) A contains an ideal I such that I is strongly regular and A/I is a commutative reduced filial algebra.

(iii) A/S(A) is a commutative reduced filial algebra.

Semiprime algebras over an arbitrary commutative ring *K* with identity

Recall that an algebra A is called strongly regular if for every $a \in A$ there is $x \in A$ such that $a = a^2 x$ (equivalently, $a = xa^2$).

Theorem

The following conditions on A are equivalent:

- (i) A is semiprime and left filial.
- (ii) A contains an ideal I such that I is strongly regular and A/I is a commutative reduced filial algebra.
- (iii) A/S(A) is a commutative reduced filial algebra.

Semiprime algebras over an arbitrary commutative ring K with identity

Recall that an algebra A is called strongly regular if for every $a \in A$ there is $x \in A$ such that $a = a^2 x$ (equivalently, $a = xa^2$).

Theorem

The following conditions on A are equivalent:

- (i) A is semiprime and left filial.
- (ii) A contains an ideal I such that I is strongly regular and A/I is a commutative reduced filial algebra.
- (iii) A/S(A) is a commutative reduced filial algebra.

Semiprime algebras over a field F

If K is a field we get the following

Theorem

A semiprime algebra A is left filial if and only if A is strongly regular.

・ロン ・回 と ・ ヨ と ・ ヨ と …

Semiprime algebras over a field F

If K is a field we get the following

Theorem

A semiprime algebra A is left filial if and only if A is strongly regular.

・ロン ・回 と ・ ヨ と ・ ヨ と …

β -radical algebras over an arbitrary K

Theorem

Every β -radical filial algebra A is an H-algebra (i.e., algebra in which all subalgebras are ideals) and $A = \sum \{I \triangleleft A \mid I$ - nilpotent ideal $\}$.

From this theorem in particular we get

Corollary. Every β -radical filial algebra is left filial.

・ロト ・同ト ・ヨト ・ヨト

β -radical algebras over an arbitrary K

Theorem

Every β -radical filial algebra A is an H-algebra (i.e., algebra in which all subalgebras are ideals) and $A = \sum \{I \triangleleft A \mid I$ - nilpotent ideal $\}$.

From this theorem in particular we get

Corollary. Every β -radical filial algebra is left filial.

・ロト ・ 同ト ・ ヨト ・ ヨト

 β -radical algebras over an arbitrary K

Theorem

Every β -radical filial algebra A is an H-algebra (i.e., algebra in which all subalgebras are ideals) and $A = \sum \{I \triangleleft A \mid I \text{- nilpotent ideal}\}$.

From this theorem in particular we get

Corollary. Every β -radical filial algebra is left filial.

・ロト ・ 同ト ・ ヨト ・ ヨト

β -radical algebras over a field F

Theorem

For a β -radical algebra A the following conditions are equivalent

(i) A is left filial; (ii) $A^3 = 0$ and for every $a \in A$, $Aa = Fa^2$; (iii) $A^3 = 0$ and for every $x \in A$, Ax = xA = F(iv) A is an H-algebra

Fheorem

β -radical algebras over a field F

Theorem

For a β -radical algebra A the following conditions are equivalent

- (i) A is left filial;
- (ii) $A^3 = 0$ and for every $a \in A$, $Aa = Fa^2$;
- (iii) $A^3 = 0$ and for every $x \in A$, $Ax = xA = Fx^2$;
- (iv) A is an H-algebra

(v) A is filial

Fheorem

β -radical algebras over a field F

Theorem

For a β -radical algebra A the following conditions are equivalent (i) A is left filial; (ii) $A^3 = 0$ and for every $a \in A$, $Aa = Fa^2$; (iii) $A^3 = 0$ and for every $x \in A$, $Ax = xA = Fx^2$; (iv) A is an H-algebra (v) A is filial.

Fheorem

β -radical algebras over a field F

Theorem

For a β -radical algebra A the following conditions are equivalent

(i) A is left filial;

(ii)
$$A^3 = 0$$
 and for every $a \in A$, $Aa = Fa^2$;

(iii)
$$A^3 = 0$$
 and for every $x \in A$, $Ax = xA = Fx^2$;

(iv) A is an H-algebra

(v) A is filial

Theorem

β -radical algebras over a field F

Theorem

For a β -radical algebra A the following conditions are equivalent

(i) A is left filial;

(ii)
$$A^3 = 0$$
 and for every $a \in A$, $Aa = Fa^2$;

(iii)
$$A^3 = 0$$
 and for every $x \in A$, $Ax = xA = Fx^2$;

(iv) A is an H-algebra

(v) A is filial.

Theorem

β -radical algebras over a field F

Theorem

For a β -radical algebra A the following conditions are equivalent

(i) A is left filial;

(ii)
$$A^3 = 0$$
 and for every $a \in A$, $Aa = Fa^2$;

(iii)
$$A^3 = 0$$
 and for every $x \in A$, $Ax = xA = Fx^2$;

(iv) A is an H-algebra

(v) A is filial.

Theorem

β -radical algebras over a field F

Theorem

For a β -radical algebra A the following conditions are equivalent

(i) A is left filial;

(ii)
$$A^3 = 0$$
 and for every $a \in A$, $Aa = Fa^2$;

(iii)
$$A^3 = 0$$
 and for every $x \in A$, $Ax = xA = Fx^2$;

(iv) A is an H-algebra

(v) A is filial.

Theorem

The structure of left filial algebras over field F

Theorem

A is a left filial algebra if and only if $A/\beta(A)$ is strongly regular, $\beta(A)$ is H-algebra and

(i) $A = I_A(\beta(A)) + \beta(A)$

or

(ii) $A = Fe + I_A(\beta(A)) + \beta(A)$, where $\beta(A) \neq 0$ and e is an idempotent of A such that eb = b for every $b \in \beta(A)$.

・ロン ・四 と ・ ヨ と ・ ヨ と

The structure of left filial algebras over field F

Theorem

A is a left filial algebra if and only if $A/\beta(A)$ is strongly regular, $\beta(A)$ is H-algebra and (i) $A = I_A(\beta(A)) + \beta(A)$ or (ii) $A = Fe + I_A(\beta(A)) + \beta(A)$, where $\beta(A) \neq 0$ and e is an idempotent of A such that eb = b for

every $b \in \beta(A)$

・ロン ・四 と ・ ヨ と ・ ヨ と

The structure of left filial algebras over field F

Theorem

A is a left filial algebra if and only if $A/\beta(A)$ is strongly regular, $\beta(A)$ is H-algebra and (i) $A = I_A(\beta(A)) + \beta(A)$

or

(ii) $A = Fe + l_A(\beta(A)) + \beta(A)$, where $\beta(A) \neq 0$ and e is an idempotent of A such that eb = b for every $b \in \beta(A)$.

・ロン ・四 と ・ ヨ と ・ ヨ と

The structure of left filial algebras over field F

Theorem

A is a left filial algebra if and only if $A/\beta(A)$ is strongly regular, $\beta(A)$ is H-algebra and (i) $A = L(\beta(A)) + \beta(A)$

(i)
$$A = I_A(\beta(A)) + \beta(A)$$

or

(ii)
$$A = Fe + I_A(\beta(A)) + \beta(A)$$
, where
 $\beta(A) \neq 0$ and e is an idempotent of A such that $eb = b$ for
every $b \in \beta(A)$.

・ロン ・回 と ・ ヨン ・ ヨン

The structure of left filial algebras over field F

The structure of algebras satisfying (ii) $A = Fe + I_A(\beta(A)) + \beta(A)$, where $\beta(A) \neq 0$ and e is an idempotent of A such that eb = b for every $b \in \beta(A)$

Let U be an algebra with identity, T an algebra and M a U - T-bimodule, which is unitary as the left U-module. The set $\begin{pmatrix} U & M \\ 0 & T \end{pmatrix}$ of matrices of the form $\begin{pmatrix} u & m \\ 0 & t \end{pmatrix}$, where $u \in U$, $m \in M$ and $t \in T$, is an algebra with respect to the obvious matrix operations.

Theorem

A is an algebra satisfying case (ii) if and only if $A \simeq \begin{pmatrix} S^* & M \\ 0 & T \end{pmatrix}$, where S is a left filial algebra such that $S = I_S(\beta(S)) + \beta(S)$ and $\beta(S) \neq 0$, T is a strongly regular algebra, M is an $S^* - T$ - bimodule, which is unitary as the left S^* -module and such that SM = 0.

The structure of left filial algebras over field F

The structure of algebras satisfying (ii) $A = Fe + I_A(\beta(A)) + \beta(A)$, where $\beta(A) \neq 0$ and e is an idempotent of A such that eb = b for every $b \in \beta(A)$

Let U be an algebra with identity, T an algebra and M a U - T-bimodule, which is unitary as the left U-module. The set $\begin{pmatrix} U & M \\ 0 & T \end{pmatrix}$ of matrices of the form $\begin{pmatrix} u & m \\ 0 & t \end{pmatrix}$, where $u \in U$, $m \in M$ and $t \in T$, is an algebra with respect to the obvious matrix operations.

Theorem

A is an algebra satisfying case (ii) if and only if $A \simeq {\binom{S^*}{0}} M_T$, where S is a left filial algebra such that $S = I_S(\beta(S)) + \beta(S)$ and $\beta(S) \neq 0$, T is a strongly regular algebra, M is an $S^* - T$ - bimodule, which is unitary as the left S^* -module and such that SM = 0.

The structure of left filial algebras over field F

The structure of algebras satisfying (i) $A = I_A(\beta(A)) + \beta(A)$

Let T an algebra with identity and M a unitary right T-module. The set $\begin{pmatrix} T & 0 \\ M & 0 \end{pmatrix}$ of matrices of the form $\begin{pmatrix} t & 0 \\ m & 0 \end{pmatrix}$, where $t \in T$ and $m \in M$, is an algebra with respect to obvious matrix operations.

Theorem

An algebra A such that

dim_F(A/ β (A)) < ∞ satisfies case (i) if and only if A $\simeq \begin{pmatrix} T & 0 \\ M & 0 \end{pmatrix} \oplus B$, where T is a finite dimensional strongly regular algebra with identity, M is a unitary right T-module and B is a nilpotent left filial algebra.

The structure of left filial algebras over field F

The structure of algebras satisfying (i) $A = I_A(\beta(A)) + \beta(A)$

Let T an algebra with identity and M a unitary right T-module. The set $\begin{pmatrix} T & 0 \\ M & 0 \end{pmatrix}$ of matrices of the form $\begin{pmatrix} t & 0 \\ m & 0 \end{pmatrix}$, where $t \in T$ and $m \in M$, is an algebra with respect to obvious matrix operations.

Theorem

An algebra A such that

 $\dim_F(A/\beta(A)) < \infty$ satisfies case (i) if and only if $A \simeq \begin{pmatrix} T & 0 \\ M & 0 \end{pmatrix} \oplus B$, where T is a finite dimensional strongly regular algebra with identity, M is a unitary right T-module and B is a nilpotent left filial algebra.

・ロト ・ 同ト ・ ヨト ・ ヨト

Tzintzis radical

 $\mathcal{X}(\mathcal{X}_{l},\mathcal{X}_{r})$ - the upper radical determined by the class of filial (left filial, right filial) rings.

 G.Tzintzis, An almost subidempotent radical property, Acta Math. Hung., 1987;

 G.Tzintzis, A one-sided admissible ideal radical which is almost subidempotent, Acta Math. Hung., 1987;

Tzintzis got a satisfactory description of \mathcal{X}_r and \mathcal{X}_l . Namely he obtained

Theorem

 $\chi_l = \chi_r = u_{D \cup T}$, where $u_{D \cup T}$ is the upper radical determined by the union of the class of division rings D and the class of rings with zero multiplication T.

Tzintzis radical

 $\mathcal{X}(\mathcal{X}_{l},\mathcal{X}_{r})$ - the upper radical determined by the class of filial (left filial, right filial) rings.

- G.Tzintzis, *An almost subidempotent radical property*, Acta Math. Hung., 1987;
- G.Tzintzis, A one-sided admissible ideal radical which is almost subidempotent, Acta Math. Hung., 1987;

Tzintzis got a satisfactory description of \mathcal{X}_r and \mathcal{X}_l . Namely he obtained

Theorem

 $\chi_l = \chi_r = u_{D \cup T}$, where $u_{D \cup T}$ is the upper radical determined by the union of the class of division rings D and the class of rings with zero multiplication T.

Tzintzis radical

 $\mathcal{X}(\mathcal{X}_{l},\mathcal{X}_{r})$ - the upper radical determined by the class of filial (left filial, right filial) rings.

• G.Tzintzis, *An almost subidempotent radical property*, Acta Math. Hung., 1987;

• G.Tzintzis, A one-sided admissible ideal radical which is almost subidempotent, Acta Math. Hung., 1987;

Tzintzis got a satisfactory description of \mathcal{X}_r and \mathcal{X}_l . Namely he obtained

Theorem

 $\chi_I = \chi_r = u_{D\cupT}$, where $u_{D\cupT}$ is the upper radical determined by the union of the class of division rings D and the class of rings with zero multiplication T.

Tzintzis radical

 $\mathcal{X}(\mathcal{X}_{l},\mathcal{X}_{r})$ - the upper radical determined by the class of filial (left filial, right filial) rings.

- G.Tzintzis, *An almost subidempotent radical property*, Acta Math. Hung., 1987;
- G.Tzintzis, A one-sided admissible ideal radical which is almost subidempotent, Acta Math. Hung., 1987;

Tzintzis got a satisfactory description of \mathcal{X}_r and $\mathcal{X}_l.$ Namely he obtained

Theorem

 $\mathcal{X}_{I} = \mathcal{X}_{r} = u_{\mathcal{D}\cup\mathcal{T}}$, where $u_{\mathcal{D}\cup\mathcal{T}}$ is the upper radical determined by the union of the class of division rings \mathcal{D} and the class of rings with zero multiplication \mathcal{T} .

Tzintzis radical

 $\mathcal{X}(\mathcal{X}_{l},\mathcal{X}_{r})$ - the upper radical determined by the class of filial (left filial, right filial) rings.

- G.Tzintzis, *An almost subidempotent radical property*, Acta Math. Hung., 1987;
- G.Tzintzis, A one-sided admissible ideal radical which is almost subidempotent, Acta Math. Hung., 1987;

Tzintzis got a satisfactory description of \mathcal{X}_r and $\mathcal{X}_l.$ Namely he obtained

Theorem

 $\mathcal{X}_{I} = \mathcal{X}_{r} = u_{\mathcal{D}\cup\mathcal{T}}$, where $u_{\mathcal{D}\cup\mathcal{T}}$ is the upper radical determined by the union of the class of division rings \mathcal{D} and the class of rings with zero multiplication \mathcal{T} .

Tzintzis radical

 $\mathcal{X}(\mathcal{X}_{l},\mathcal{X}_{r})$ - the upper radical determined by the class of filial (left filial, right filial) rings.

- G.Tzintzis, *An almost subidempotent radical property*, Acta Math. Hung., 1987;
- G.Tzintzis, A one-sided admissible ideal radical which is almost subidempotent, Acta Math. Hung., 1987;

Tzintzis got a satisfactory description of \mathcal{X}_r and $\mathcal{X}_l.$ Namely he obtained

Theorem

 $\mathcal{X}_{l} = \mathcal{X}_{r} = u_{\mathcal{D}\cup\mathcal{T}}$, where $u_{\mathcal{D}\cup\mathcal{T}}$ is the upper radical determined by the union of the class of division rings \mathcal{D} and the class of rings with zero multiplication \mathcal{T} .

Tzintzis radical

In the paper

M.Filipowicz, E.R.Puczylowski *On the upper radical determined by filial rings*, Acta Math. Hungar., 2006

we got the following discription of \mathcal{X} :

Theorem

 $\mathcal{X} = u_C = \{R \mid R \text{ cannot be homomorphically mapped onto a nonzero ring in } C\}$, where $C = \{R \mid \text{for every } I \triangleleft R, RI = I^3 = IR\}$.

In above paper was constructed a ring giving a counterexample to all of Tzintzis' questions.

() < </p>
Introduction Semiprime algebras Prime radical The structure of left filial algebras over field F Tzintzis radical

Tzintzis radical

In the paper

M.Filipowicz, E.R.Puczylowski *On the upper radical determined by filial rings*, Acta Math. Hungar., 2006

we got the following discription of \mathcal{X} :

Theorem

 $\mathcal{X} = u_C = \{R \mid R \text{ cannot be homomorphically mapped onto a nonzero ring in } C\}$, where $C = \{R \mid \text{for every } I \triangleleft R, RI = I^3 = IR\}$.

In above paper was constructed a ring giving a counterexample to all of Tzintzis' questions.

() < </p>

Introduction Semiprime algebras Prime radical The structure of left filial algebras over field F Tzintzis radical

Tzintzis radical

In the paper

M.Filipowicz, E.R.Puczylowski *On the upper radical determined by filial rings*, Acta Math. Hungar., 2006

we got the following discription of \mathcal{X} :

Theorem

 $\mathcal{X} = u_C = \{R \mid R \text{ cannot be homomorphically mapped onto a nonzero ring in } C\}$, where $C = \{R \mid \text{for every } I \triangleleft R, RI = I^3 = IR\}$.

In above paper was constructed a ring giving a counterexample to all of Tzintzis' questions.

() < </p>

Introduction Semiprime algebras Prime radical The structure of left filial algebras over field F Tzintzis radical

Tzintzis radical

In the paper

M.Filipowicz, E.R.Puczylowski *On the upper radical determined by filial rings*, Acta Math. Hungar., 2006

we got the following discription of \mathcal{X} :

Theorem

 $\mathcal{X} = u_C = \{R \mid R \text{ cannot be homomorphically mapped onto a nonzero ring in } C\}$, where $C = \{R \mid \text{for every } I \triangleleft R, RI = I^3 = IR\}$.

In above paper was constructed a ring giving a counterexample to all of Tzintzis' questions.

・ロト ・ 同ト ・ ヨト ・ ヨト