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Let N be a homomorphically closed class of

associative rings. Put N1 = N1 = N and for

ordinals α ≥ 2, define Nα, (Nα) to be the class

of all associative rings R such that every non-

zero homomorphic image of R contains a non-

zero ideal in Nβ (left ideal in N β) for some β <

α. In this way we obtain a chain {Nα} ({Nα}),

the union of which is equal to the lower radical

class lN (lower left strong radical class lsN )

determined by N . The chain {Nα} is called

Kurosh’s chain of N .
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In [18] Suliński, Anderson and Divinsky studied

the Kurosh’s chain in the universal class of

associative rings. They described the classes

Nα in terms of accessible subrings and proved

that the chain stabilizes at the first limit ordinal

ω. They asked whether, for each ordinal α ≤ ω,

there exists a class N such that lN = Nα 6=
Nβ for β < α. The question turned out to

be very interesting and challenging. In [11],

Heinicke answered it in the positive for α =

ω. However, the problem for positive integers

resisted effords of many authors for a long

time. Various studies, except some general

results, effected in solving the problem for small

integers and determining when the chain stabi-

lizes for some specific classes N ([17]).
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The general problem was finally solved in the

positive by Beidar in [5]. After that, several

new examples were found (see [1], [2], [6], [13],

[14], [19]). All of them were not easy to handle

and required quite complicated arguments.

Developing some ideas of the mentioned papers

(mainly those of [14]), we construct new gene-

ral examples. The generality allows us to avoid

particular calculations which, we hope, makes

the arguments clearer and more visible. It also

allows us to construct radicals which satisfy

some extra properties.
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To denote that I is an ideal (left ideal) of a

ring R, we write I � R (I < R). Let n be

a positive integer. A subring A of a ring R is

said to be n-accessible (left n-accessible) in R if

there are subrings R = A0, A1, . . . , An−1, An =

A of R such that Ai � Ai−1 (Ai < Ai−1) for

i = 1, 2, . . . , n, and A is said to be precisely n-

accessible if it is not k-accessible in R for any

positive integer k < n. A subring A is accessible

(left accesible) in R if it is n-accessible (left n-

accessible) for certain n ∈ N.
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The following proposition collects some well

known properties of classes Nα and Nα.

Proposition 1. (i) Nα ⊆ Nα for every ordinal

α;

(ii) classes Nα and Nα are homomorphically

closed for all α;

(iii) if 0 6= R ∈ lsN then R contains a non-zero

left accessible subring in N ;

(iv) R ∈ lN if and only if every non-zero homo-

morphic image of R contains a non-zero acce-

ssible subring in N ;

(v) if 0 6= R ∈ Nn+1, where n is an integer ≥ 1,

then R contains a non-zero n-left accessible

subring in N ;

(vi) R ∈ Nn+1, where n is an integer ≥ 1, if and

only if every non-zero homomorphic image of

R contains a non-zero n-accessible subring in

N ;

(vii) ([8,16]) For every ordinal α ≥ ω and for

every class N , Nα is a radical.
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Recall that a radical class S is called left stable

if for every L < R, S(L) ⊆ S(R). An example of

a left stable radical class is the generalized nil

radical Ng; this is the upper radical determined

by the class of domains. For every homomor-

phically closed class N there exists the smallest

left stable radical stN containing N . Moreover,

R ∈ stN if and only if every non-zero homomor-

phic image of R contains a non-zero left acce-

ssible subring in N . For example:

Ng = st{R | R2 = 0}.

Theorem 1 ([1,15]). If S is a left stable

radical class containing Ng then for N = S ∪P,

where P is a homomorphically closed class of

commutative rings, Nα = Nα for every ordinal

α and lN is left stable. Moreover, if N is

hereditary then lN is hereditary.
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Note that if A is a subring of a commutative

ring R, then for every positive integer n, A +

RAn+1 is the ideal of A+RAn generated by A.

This gives us the following.

Proposition 2. Let A be a subring of a commu-

tative ring R. Then

(i) A is n-accessible in R if and only if RAn ⊆ A;

(ii) A+RAn is the smallest n-accessible subring

in R containing A.

Given an element a in a commutative ring R,

we shall denote by 〈a〉 the subring of R genera-

ted by a.

Observe that for every positive integer n, 〈a〉+
Ran = 〈a〉+R〈a〉n. Hence, Proposition 2 implies

that 〈a〉 + Ran is an n-accessible subring of

R and for n ≥ 2, the subring is precisely n-

accessible in R if and only if 〈a〉+ Ran 6= 〈a〉+

Ran−1.
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If R is a commutative ring and a ∈ R is such

that for every integer n ≥ 2, 〈a〉+ Ran 6= 〈a〉+

Ran−1, then we write accR(a) = ∞.

Proposition 3 ([2]). Suppose that R is an

integral domain and 0 6= a ∈ R. If accR(a) =

∞, then R 6= 〈1〉+ Ra.

Conversely, if R 6= 〈1〉+ Ra, then accR(a) = ∞
provided Ra ∩ 〈1〉 = 0. If R 6= 〈1〉 + Ra and

Ra ∩ 〈1〉 6= 0, then Ra ∩ 〈1〉 = b〈1〉 for some

b ∈ 〈1〉 and accR(b) = ∞.
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A ring R is called filial if every accessible subring

of R is an ideal of R. In [9], it was proved that

an integral domain R is filial if and only if for

every 0 6= a ∈ R, R = 〈1〉 + Ra. Hence, by

Proposition 3, an integral domain R is non-

filial if and only if R contains an element a

with accR(a) = ∞.

Applying Proposition 3, one can easily find

integral domains R and elements a ∈ R with

accR(a) = ∞.
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The following are particular examples.

1. Let A be an integral domain and let R =

A[x] be the ring of polynomials over A in the

indeterminate x. Clearly, if f ∈ R and deg f ≥
2, then by Proposition 3, accR(f) = ∞.

2. Let A be an integral domain and R =

A[[x]] be the power series ring over A in the

indeterminate x. For every integer k ≥ 2,

accR(xk) = ∞. Moreover, if A 6= 〈1〉, then

accR(x) = ∞.

3. Let R be an integral domain which is an

algebra over a field F . If 0 6= a ∈ R and

dimF (R/Ra) > 1, then by Proposition 3,

accR(a) = ∞. In particular, if 0 6= r ∈ R

and r is a non-invertible element of R, then

accR(r2) = ∞.
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We say that a subring A of a ring R is essential

in R if for every non-zero ideal I of R, we have

A ∩ I 6= 0.

Definition 1 (Beidar, 1993). We say that a

ring R is a iterated maximal essential extension

of a ring A and we write R = IME(A) if A is

an essential accessible subring of R and, for

every ring S in which A is accessible, there

exists a homomorphism of S into R which is

the identity map on A.
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Proposition 4 ([3]). Assume A is a semiprime

ring for which there exists R = IME(A). If A

is n-accessible in R, then for every semiprime

ring S in which A is accessible, A is n-accessible

in S.

Proposition 5 ([3]). Let R be a ring such that

R = IME(I) for every non-zero ideal I of R.

Let A and B be non-zero accessible isomorphic

subrings of R. If A is precisely n-accessible in

R, then so is B.
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Let P be an integral domain with K the field

of fractions. We say that P is a completely

normal ring if for any x ∈ K and 0 6= a ∈ P , we

have that 〈x〉a ⊆ P implies x ∈ P .

The following are particular examples:

• noetherian integrally closed domains,

• unique factorization domains,

• Krull rings.

Proposition 6 ([3]). If R 6= 0 is a commutative

ring then the following conditions are equivalent:

(i) R = IME(I) for every 0 6= I � R,

(ii) R = IME(A) for every non-zero accessible

subring A of R;

(iii) R is a completely normal ring.
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Proposition 7. Let R be a ring such that

R = IME(I) for every non-zero ideal I of R.

Then the following conditions are equivalent:

(i) If f : A → B is an epimorphism of non-

zero accessible subrings of R, then f is an

isomorphism;

(ii) If 0 6= I � R and g : R → R is a homomor-

phism such that Ker g 6= 0, then I 6⊆ g(R).

Examples of rings R satisfies the condition (i)

of Proposition 7:

• integral domains P such that P + is torsion-

free and (P/I)+ is torsion for every 0 6= I � P

(cf. [5]),

• commutative domains A such that A/I is

nilpotent for every 0 6= I � A (cf. [19]),

• noetherian integrally closed domains (cf. [2]),

• integral domains P with K 6= P the field of

fractions of positive characteristic p such that

deg trF (P ) = 1 (F = Z/(p)) (cf. [14]).
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Theorem 2. Suppose that P is a non-filial

completely normal ring such that if f : A →
B is an epimorphism of non-zero accessible

subrings of P , then f is an isomorphism; P
is the class of all proper homomorphic images

of all accessible subrings of P and S = st(P ∪
{R|R2 = 0}). Then for every n ∈ N the set

P(n) of all precisely n-accessible subrings of

P is non-empty. Moreover, if ∅ 6= A(n) ⊆
P(n) and N (n) = S ∪ {A(n)}, then N (n)n =

N (n)n 6= N (n)n+1 = N (n)n+1 = lN (n) =

lsN (n) = stN (n). If A(n) = P(n), then the

radical class lN (n) is hereditary.
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Proof. Applying Proposition 3, we get that

P(n) 6= ∅ for every n ∈ N. By Proposition

6, P = IME(A) for every non-zero accessible

subring A of P . Moreover, by Theorem 1,

N (n)α = N (n)α for every ordinal α and lN (n)

is left stable.

Clearly, every non-zero homomorphic image of

P contains a non-zero accessible subring in

N (n). Hence, P ∈ lN (n). By the assumptions,

S(P ) = 0 and by Proposition 5, no non-zero

(n − 1)-accessible subrings of P is in {A(n)}.

Consequently, P ∈ lN (n) \ N (n)n.

We show that lN (n) = N (n)n+1 or, equivalen-

tly, that every non-zero ring R ∈ lN (n) contains

a non-zero n-accessible subring in N (n). This

is obvious if S(R) 6= 0. Thus, assume that

S(R) = 0, which implies that R is semiprime.

Since R ∈ lN (n), R contains a non-zero accessi-

ble subring D ∈ N (n). Obviously, D 6∈ S.

Therefore D ∈ {A(n)}, and by Proposition 4,

D is a n-accessible subring of R.
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Finally, suppose A(n) = P(n). Let A be the

class of all homomorphic images of all accessi-

ble subrings of P . Then by Theorem 1 the

radical class T = st(A∪ {R|R2 = 0}) is heredi-

tary. We show that lN (n) = T for every n ∈
N. It suffices to show that every non-zero

accessible subring D of P is in lN (n). By

Proposition 2, there is a positive integer m

such that PDm ⊆ D. Since P is non-filial,

there is 0 6= a ∈ P such that P 6= 〈1〉 + Pa.

Let 0 6= s ∈ D. Then 0 6= b = asm ∈ D ∩ Pa.

Since P 6= 〈1〉 + Pa, P 6= 〈1〉 + Pb. Hence, by

Proposition 3, there is c ∈ Pb with accP (c) =

∞. Obviously, Pc ⊆ D. By Proposition 2,

C = 〈c〉 + Pcn ∈ A(n) and C ⊆ D. Hence, 0 6=
C ⊆ (lN (n))(D). Every proper homomorphic

image of D is in P, so D/(lN (n))(D) ∈ P.

Consequently, D ∈ lN (n). The result follows.

2
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Theorem 3. Let P be a noetherian integrally
closed domain, a ∈ P , accP (a) = ∞; P be
the class of all proper homomorphic images of
all non-zero accessible subrings of P and S =
st(P ∪ {R|R2 = 0}). If N = {〈ak〉 + Pak2|k =
1, 2, . . .} ∪ S, then for every positive integer n,
lN = lsN = stN 6= Nn.

Theorem 4. Let K be a field and P = K[x], P
be the class of all proper homomorphic images
of all non-zero accessible subrings of P , S =
st(P ∪{R|R2 = 0}) and N = {〈f〉+Pfdeg f |f ∈
P, deg f ≥ 2} ∪ S. Then lN = lsN = stN =
Nω = Nω 6= Nn = Nn for every n ∈ N and the
radical class lN is hereditary.

Theorem 5. Let P1, P2, . . . are pairwise non-
isomorphic non-filial Dedekind rings, K is the
class of all fields, S = st(K∪{R|R2 = 0}), A(n)
is the set of all precisely n-accessible subrings
of Pn for n ∈ N and N = S ∪{A(1)}∪ . . .. Then
lN = lsN = stN = Nω = Nω 6= Nn = Nn

for every n ∈ N and the radical class lN is
hereditary.
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Question 1 (cf. [16]). Is for every class N ,

lsN = Nω?

Question 2. Does for every natural number

n there exist a radical class N with lsN =

Nn+1 6= Nn?

Question 3. Does there exist a radical class

class N such that lsN = Nω 6= Nn for every

natural number n?

Question 4. Does there exist a radical class

class N such that lsN 6= Nα for every ordinal

α?
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The history of ADS problem:

• 1968, Heinicke: P = F [x, t], An = 〈x〉 + Pxn

for n = 1, 2, . . ..

• 1982, Beidar: P = Z[i], p-prime of the form

4k + 3 and An = 〈p〉+ Ppn for n = 1, 2, . . ..

• 1984, Lvov and Sidorov: An = F [a] + Pan,

dimF (P/Pa) ≥ 2,

P -completely normal F -algebra such that

deg trF (P ) = 1.

• Watters: K is a proper field extension of a

field F , A = K[[x]], An = xF [[x]] + Axn.

• 1987, Guo Jin Yun: F = Z/(p), P = F [x],

An = 〈xn〉+ Pxn2
.

• 1988, Beidar: K-field, P = K[x], An,f =

〈xrf〉+ Pfxrn, r ≥ 2, f ∈ K[x], f(0) 6= 0.
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Theorem ([1,17]). If N is a class of M-

nilpotent rings then lN = lsN = N3 = N3.

Theorem ([16]). If M is hereditary radical

then lsM = M2.

Theorem ([16]). (i). If the class N is heredi-

tary then lsN = N4.

(ii). If the class N is hereditary and contains

all trivial rings then lsN = N3.

Theorem ([4,18]). (i). If the class N is

hereditary then lN = N3.

(ii). If the class N is hereditary and contains

all trivial rings then lN = N2.
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