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De�nition
(H. J. Le Roux) For a class µ of rings, µ� denotes the class of all rings A
such that either A is a simple ring in µ or the factor ring A/I is in µ for
every nonzero ideal I of A and every minimal ideal M of A is in µ.

Theorem
(H. J. Le Roux and G. A. P. Heyman) If ρ is a supernilpotent radical, then
so is L (ρ�) and ρ � L (ρ�) � ρϕ, where ρϕ denotes the upper radical
determined by the class of all subdirectly irreducible rings with
ρ-semisimple hearts. Moreover, L (G�) = Gϕ, where G is the
Brown-McCoy radical.

Problem
Is it true that L (ρ�) = ρϕ if ρ is replaced by β, L, N or J , where β, L,
N and J denote the Baer, the Levitzki, the Koethe and the Jacobson
radical, respectively?

Aim of the talk: To give a negative answer to this question.

Halina France-Jackson (Institute) On special and nonspecial radicals July 7, 2009 2 / 11



De�nition
(H. J. Le Roux) For a class µ of rings, µ� denotes the class of all rings A
such that either A is a simple ring in µ or the factor ring A/I is in µ for
every nonzero ideal I of A and every minimal ideal M of A is in µ.

Theorem
(H. J. Le Roux and G. A. P. Heyman) If ρ is a supernilpotent radical, then
so is L (ρ�) and ρ � L (ρ�) � ρϕ, where ρϕ denotes the upper radical
determined by the class of all subdirectly irreducible rings with
ρ-semisimple hearts. Moreover, L (G�) = Gϕ, where G is the
Brown-McCoy radical.

Problem
Is it true that L (ρ�) = ρϕ if ρ is replaced by β, L, N or J , where β, L,
N and J denote the Baer, the Levitzki, the Koethe and the Jacobson
radical, respectively?

Aim of the talk: To give a negative answer to this question.

Halina France-Jackson (Institute) On special and nonspecial radicals July 7, 2009 2 / 11



De�nition
(H. J. Le Roux) For a class µ of rings, µ� denotes the class of all rings A
such that either A is a simple ring in µ or the factor ring A/I is in µ for
every nonzero ideal I of A and every minimal ideal M of A is in µ.

Theorem
(H. J. Le Roux and G. A. P. Heyman) If ρ is a supernilpotent radical, then
so is L (ρ�) and ρ � L (ρ�) � ρϕ, where ρϕ denotes the upper radical
determined by the class of all subdirectly irreducible rings with
ρ-semisimple hearts. Moreover, L (G�) = Gϕ, where G is the
Brown-McCoy radical.

Problem
Is it true that L (ρ�) = ρϕ if ρ is replaced by β, L, N or J , where β, L,
N and J denote the Baer, the Levitzki, the Koethe and the Jacobson
radical, respectively?

Aim of the talk: To give a negative answer to this question.

Halina France-Jackson (Institute) On special and nonspecial radicals July 7, 2009 2 / 11



De�nition
(H. J. Le Roux) For a class µ of rings, µ� denotes the class of all rings A
such that either A is a simple ring in µ or the factor ring A/I is in µ for
every nonzero ideal I of A and every minimal ideal M of A is in µ.

Theorem
(H. J. Le Roux and G. A. P. Heyman) If ρ is a supernilpotent radical, then
so is L (ρ�) and ρ � L (ρ�) � ρϕ, where ρϕ denotes the upper radical
determined by the class of all subdirectly irreducible rings with
ρ-semisimple hearts. Moreover, L (G�) = Gϕ, where G is the
Brown-McCoy radical.

Problem
Is it true that L (ρ�) = ρϕ if ρ is replaced by β, L, N or J , where β, L,
N and J denote the Baer, the Levitzki, the Koethe and the Jacobson
radical, respectively?

Aim of the talk: To give a negative answer to this question.
Halina France-Jackson (Institute) On special and nonspecial radicals July 7, 2009 2 / 11



Lemma
If ρ is any radical class, then for any A 2 ρ�, either A 2 ρ or A 2 S (ρ).

Proof.
Let A 2 ρ� and suppose that the ρ-radical ρ (A) of A is nonzero.
Then A/ρ (A) 2 ρ and, since ρ (A) 2 ρ and ρ is closed under extensions,
it follows that A 2 ρ.

Corollary
If ρ is a supernilpotent radical, then for any A 2 ρ�, either A 2 ρ or A is a
prime ring.
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Proof.
Let A 2 ρ�. Then by Lemma either A 2 ρ or A 2 S (ρ).

If A 2 ρ, then we are done. So assume that A 2 S (ρ).
Then, since ρ is a supernilpotent radical, A is a semiprime ring. We will
now show that A is, in fact, a prime ring.
Let I and J be ideals of A and suppose that IJ = 0 and I 6= 0. We will
show that J = 0.
Since (I \ J)2 � IJ = 0 and A is a semiprime ring, it follows that
I \ J = 0.
But (I + J) /I is an ideal of A/I and A/I 2 ρ because I is a nonzero ideal
of A and A 2 ρ�.
Thus, since ρ being a supernilpotent radical is hereditary, it follows that
(I + J) /I 2 ρ.
But (I + J) /I ' J/ (I \ J) ' J since I \ J = 0. Thus J 2 ρ.
On the other hand, since S (ρ) is hereditary and J C A 2 S (ρ), it follows
that J 2 S (ρ). Thus J 2 ρ \ S (ρ) = f0g which implies that J = 0.
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De�nition
A ring A is prime essential if and only if A is semiprime and no nonzero
ideal of A is a prime ring. In what follows the class of all prime essential
rings will be denoted by E .

Theorem
(B. J. Gardner, P. Stewart) Let A be a nonzero semiprime ring,let κ > 1
be a cardinal number greater than the cardinality of A and let W (κ) be
the set of all �nite words made from a (well-ordered) alphabet of
cardinality κ, lexicographically ordered. Then W (κ) is a semi-group with
multiplication de�ned by xy = max fx , yg and we have the following

1 The semigroup ring A (W (κ)) is a subdirect sum of copies of A.
2 A (W (κ)) is prime essential.
3 Every prime homomorphic image A (W (κ)) /Q of A (W (κ)) is
isomorphic to some prime homomorphic image A/P of A.
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Theorem
(B. J. Gardner, P. Stewart) A supernilpotent radical ρ is a special radical if
and only if every prime esssential ρ-semisimple ring is a subdirect sum of
prime ρ-semisimple rings.

De�nition
A prime ring A is called a �-ring if A/I 2 β for every 0 6= I C A.

Theorem
If ρ is a supernilpotent radical whose semisimple class S (ρ) contains a
nonzero nonsimple �-ring without minimal ideals, then L (ρ�) is a
nonspecial radical and consequently L (ρ�) 6= ρϕ.
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Proof.
Let ρ be a supernilpotent radical and let a nonzero nonsimple �-ring A
without minimal ideals be in S (ρ). Then A 2 ρ� \ S (ρ).

Let κ > 1 be a cardinal number greater than the cardinality of A and let
A (W (κ)) be the semigroup ring constructed in Theorem 3. Then, by
Theorem 3, A (W (κ)) is prime essential and A (W (κ)) is a subdirect sum
of copies of A. But, since A 2 S (ρ), it follows that A (W (κ)) 2 S (ρ)
because S (ρ) is closed under subdirect sums. So A (W (κ)) 2 S (ρ) \ E .
We will now show that A (W (κ)) 2 S (L (ρ�)).
It follows from Le Roux Theorem 2 that L (ρ�) = U (σ), where σ is the
class of all rings without nonzero ideals in ρ�. Since ρ is a supernilpotent
radical, it follows from Le Roux Lemma 3 that ρ� is hereditary and it
contains all the nilpotent rings. Then it follows from Le Roux Theorem 1
that σ is a weakly special class. Thus σ � S (U (σ)). It therefore su¢ ces
to show that A (W (κ)) has no nonzero ideals in ρ�. Suppose
0 6= I C A (W (κ)) and I 2 ρ�. Then it follows from Corollary that either
I 2 ρ or I is a prime ring. But none of the two cases can occur because
0 6= I C A (W (κ)) and A (W (κ)) 2 S (ρ) \ E . Thus A (W (κ)) 2 σ and
consequently A (W (κ)) 2 S (L (ρ�)) \ E .
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Proof.
Now, if L (ρ�) were a special radical, then by Theorem 4, A (W (κ))
would contain a family fIλgλ2Λ of ideals Iλ such that \

λ2Λ
Iλ = 0 and

A (W (κ)) /Iλ 2 S (L (ρ�)) \ π, where π denotes the class of all prime
rings.

Consequently, A (W (κ)) /Iλ would be a nonzero prime
homomorphic image of A (W (κ)) for at least one Iλ. Then it follows from
the third part of Theorem 3 that A (W (κ)) /Iλ ' A/P for some ideal P
of A. Thus 0 6= A/P 2 π and, as A is a nonzero �-ring, it follows that
P = 0. Thus A (W (κ)) /Iλ ' A and consequently A 2 S (L (ρ�)). On
the other hand, A 2 ρ� � L (ρ�). Thus
0 6= A 2 L (ρ�) \ S (L (ρ�)) = f0g and we have a contradiction. Thus
L (ρ�) is a nonspecial radical. Now, since ρϕ is a special radical, it follows
that L (ρ�) 6= ρϕ which ends the proof.
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Example
(E.Sasiada, A.Sulinski) Let F be a �eld of characteristic 0 which has an
authomorphism S such that no integral power of S is the identity
automorphism.

For example, F might be a �eld generated by the real
numbers and an in�nite number of independent variables labelled ...
x�2, x�1, x0, x1, x2, ... and S the automorphism which leaves the real
numbers alone and which sends xi into xi+1 for every i . Let R be the set
of all polynomials in an indeterminate z of the form
a0 + za1 + z2a2 + ...+ znan, where ai 2 F . Addition and multiplication of
such polynomials is de�ned in the usual way except that z does not
commute with the coe¢ cients a. We de�ne az = zS (a), where S (a) is
the image of a under the authomorphism S .Then azm = zSm (a) for any
positive integer m. Then this de�nition, together with the distributive law,
makes R into a ring denoted by F [z ,S ]. Then F [z ,S ] is a
noncommutative integral domain and its every ideal I is of the form
I = zkR = Rzk for some positive integer k. Moreover, F [z ,S ] is a
primitive ring and its subring T = zR is not simple, it does not contain
minimal ideals and every proper homomorphic image of T is a nilpotent
ring.
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Corollary

If ρ is replaced by β, L, N or J , then ρ  L (ρ�)  ρϕ

Proof.
It is well known that β, L, N and J are special radicals and β � L � N
� J . Let T be the ring of Example. Clearly, T is a nonzero nonsimple
�-ring without minimal ideals. Moreover, since T is an ideal of the
primitive ring F [z ,S ] and the class of all primitive rings is hereditary, it
follows that T is primitive and so T 2 S (J ) � S (N ) � S (L) � S (β).
Now the result follows directly from Theorem
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