On special and nonspecial radicals

Halina France-Jackson
Nelson Mandela Metropolitan University, South Africa

July 7, 2009

Definition

(H. J. Le Roux) For a class μ of rings, μ^{*} denotes the class of all rings A such that either A is a simple ring in μ or the factor ring A / I is in μ for every nonzero ideal I of A and every minimal ideal M of A is in μ.

Definition

(H. J. Le Roux) For a class μ of rings, μ^{*} denotes the class of all rings A such that either A is a simple ring in μ or the factor ring A / I is in μ for every nonzero ideal I of A and every minimal ideal M of A is in μ.

Theorem

(H. J. Le Roux and G. A. P. Heyman) If ρ is a supernilpotent radical, then so is $\mathcal{L}\left(\rho^{*}\right)$ and $\rho \subseteq \mathcal{L}\left(\rho^{*}\right) \subseteq \rho_{\varphi}$, where ρ_{φ} denotes the upper radical determined by the class of all subdirectly irreducible rings with ρ-semisimple hearts. Moreover, $\mathcal{L}\left(\mathcal{G}^{*}\right)=\mathcal{G}_{\varphi}$, where \mathcal{G} is the Brown-McCoy radical.

Definition

(H. J. Le Roux) For a class μ of rings, μ^{*} denotes the class of all rings A such that either A is a simple ring in μ or the factor ring A / I is in μ for every nonzero ideal I of A and every minimal ideal M of A is in μ.

Theorem

(H. J. Le Roux and G. A. P. Heyman) If ρ is a supernilpotent radical, then so is $\mathcal{L}\left(\rho^{*}\right)$ and $\rho \subseteq \mathcal{L}\left(\rho^{*}\right) \subseteq \rho_{\varphi}$, where ρ_{φ} denotes the upper radical determined by the class of all subdirectly irreducible rings with ρ-semisimple hearts. Moreover, $\mathcal{L}\left(\mathcal{G}^{*}\right)=\mathcal{G}_{\varphi}$, where \mathcal{G} is the Brown-McCoy radical.

Problem

Is it true that $\mathcal{L}\left(\rho^{*}\right)=\rho_{\varphi}$ if ρ is replaced by $\beta, \mathcal{L}, \mathcal{N}$ or \mathcal{J}, where β, \mathcal{L}, \mathcal{N} and \mathcal{J} denote the Baer, the Levitzki, the Koethe and the Jacobson radical, respectively?

Definition

(H. J. Le Roux) For a class μ of rings, μ^{*} denotes the class of all rings A such that either A is a simple ring in μ or the factor ring A / I is in μ for every nonzero ideal I of A and every minimal ideal M of A is in μ.

Theorem

(H. J. Le Roux and G. A. P. Heyman) If ρ is a supernilpotent radical, then so is $\mathcal{L}\left(\rho^{*}\right)$ and $\rho \subseteq \mathcal{L}\left(\rho^{*}\right) \subseteq \rho_{\varphi}$, where ρ_{φ} denotes the upper radical determined by the class of all subdirectly irreducible rings with ρ-semisimple hearts. Moreover, $\mathcal{L}\left(\mathcal{G}^{*}\right)=\mathcal{G}_{\varphi}$, where \mathcal{G} is the Brown-McCoy radical.

Problem

Is it true that $\mathcal{L}\left(\rho^{*}\right)=\rho_{\varphi}$ if ρ is replaced by $\beta, \mathcal{L}, \mathcal{N}$ or \mathcal{J}, where β, \mathcal{L}, \mathcal{N} and \mathcal{J} denote the Baer, the Levitzki, the Koethe and the Jacobson radical, respectively?

Aim of the talk: To give a negative answer to this question.

Lemma

If ρ is any radical class, then for any $A \in \rho^{*}$, either $A \in \rho$ or $A \in \mathcal{S}(\rho)$.

Lemma

If ρ is any radical class, then for any $A \in \rho^{*}$, either $A \in \rho$ or $A \in \mathcal{S}(\rho)$.

Proof.

Let $A \in \rho^{*}$ and suppose that the ρ-radical $\rho(A)$ of A is nonzero.

Lemma

If ρ is any radical class, then for any $A \in \rho^{*}$, either $A \in \rho$ or $A \in \mathcal{S}(\rho)$.

Proof.

Let $A \in \rho^{*}$ and suppose that the ρ-radical $\rho(A)$ of A is nonzero. Then $A / \rho(A) \in \rho$ and, since $\rho(A) \in \rho$ and ρ is closed under extensions, it follows that $A \in \rho$.

Lemma

If ρ is any radical class, then for any $A \in \rho^{*}$, either $A \in \rho$ or $A \in \mathcal{S}(\rho)$.

Proof.

Let $A \in \rho^{*}$ and suppose that the ρ-radical $\rho(A)$ of A is nonzero. Then $A / \rho(A) \in \rho$ and, since $\rho(A) \in \rho$ and ρ is closed under extensions, it follows that $A \in \rho$.

Corollary

If ρ is a supernilpotent radical, then for any $A \in \rho^{*}$, either $A \in \rho$ or A is a prime ring.

Proof.

Let $A \in \rho^{*}$. Then by Lemma either $A \in \rho$ or $A \in \mathcal{S}(\rho)$.

Proof.

Let $A \in \rho^{*}$. Then by Lemma either $A \in \rho$ or $A \in \mathcal{S}(\rho)$.
If $A \in \rho$, then we are done. So assume that $A \in \mathcal{S}(\rho)$.

Proof.

Let $A \in \rho^{*}$. Then by Lemma either $A \in \rho$ or $A \in \mathcal{S}(\rho)$.
If $A \in \rho$, then we are done. So assume that $A \in \mathcal{S}(\rho)$.
Then, since ρ is a supernilpotent radical, A is a semiprime ring. We will now show that A is, in fact, a prime ring.

Proof.

Let $A \in \rho^{*}$. Then by Lemma either $A \in \rho$ or $A \in \mathcal{S}(\rho)$.
If $A \in \rho$, then we are done. So assume that $A \in \mathcal{S}(\rho)$.
Then, since ρ is a supernilpotent radical, A is a semiprime ring. We will now show that A is, in fact, a prime ring.
Let I and J be ideals of A and suppose that $I J=0$ and $I \neq 0$. We will show that $J=0$.

Proof.

Let $A \in \rho^{*}$. Then by Lemma either $A \in \rho$ or $A \in \mathcal{S}(\rho)$.
If $A \in \rho$, then we are done. So assume that $A \in \mathcal{S}(\rho)$.
Then, since ρ is a supernilpotent radical, A is a semiprime ring. We will now show that A is, in fact, a prime ring.
Let I and J be ideals of A and suppose that $I J=0$ and $I \neq 0$. We will show that $J=0$.
Since $(I \cap J)^{2} \subseteq I J=0$ and A is a semiprime ring, it follows that $I \cap J=0$.

Proof.

Let $A \in \rho^{*}$. Then by Lemma either $A \in \rho$ or $A \in \mathcal{S}(\rho)$.
If $A \in \rho$, then we are done. So assume that $A \in \mathcal{S}(\rho)$.
Then, since ρ is a supernilpotent radical, A is a semiprime ring. We will now show that A is, in fact, a prime ring.
Let I and J be ideals of A and suppose that $I J=0$ and $I \neq 0$. We will show that $J=0$.
Since $(I \cap J)^{2} \subseteq I J=0$ and A is a semiprime ring, it follows that $I \cap J=0$.
But $(I+J) / I$ is an ideal of A / I and $A / I \in \rho$ because I is a nonzero ideal of A and $A \in \rho^{*}$.

Proof.

Let $A \in \rho^{*}$. Then by Lemma either $A \in \rho$ or $A \in \mathcal{S}(\rho)$.
If $A \in \rho$, then we are done. So assume that $A \in \mathcal{S}(\rho)$.
Then, since ρ is a supernilpotent radical, A is a semiprime ring. We will now show that A is, in fact, a prime ring.
Let I and J be ideals of A and suppose that $I J=0$ and $I \neq 0$. We will show that $J=0$.
Since $(I \cap J)^{2} \subseteq I J=0$ and A is a semiprime ring, it follows that $I \cap J=0$.
But $(I+J) / I$ is an ideal of A / I and $A / I \in \rho$ because I is a nonzero ideal of A and $A \in \rho^{*}$.
Thus, since ρ being a supernilpotent radical is hereditary, it follows that $(I+J) / I \in \rho$.

Proof.

Let $A \in \rho^{*}$. Then by Lemma either $A \in \rho$ or $A \in \mathcal{S}(\rho)$.
If $A \in \rho$, then we are done. So assume that $A \in \mathcal{S}(\rho)$.
Then, since ρ is a supernilpotent radical, A is a semiprime ring. We will now show that A is, in fact, a prime ring.
Let I and J be ideals of A and suppose that $I J=0$ and $I \neq 0$. We will show that $J=0$.
Since $(I \cap J)^{2} \subseteq I J=0$ and A is a semiprime ring, it follows that $I \cap J=0$.
But $(I+J) / I$ is an ideal of A / I and $A / I \in \rho$ because I is a nonzero ideal of A and $A \in \rho^{*}$.
Thus, since ρ being a supernilpotent radical is hereditary, it follows that $(I+J) / I \in \rho$.
But $(I+J) / I \simeq J /(I \cap J) \simeq J$ since $I \cap J=0$. Thus $J \in \rho$.

Proof.

Let $A \in \rho^{*}$. Then by Lemma either $A \in \rho$ or $A \in \mathcal{S}(\rho)$.
If $A \in \rho$, then we are done. So assume that $A \in \mathcal{S}(\rho)$.
Then, since ρ is a supernilpotent radical, A is a semiprime ring. We will now show that A is, in fact, a prime ring.
Let I and J be ideals of A and suppose that $I J=0$ and $I \neq 0$. We will show that $J=0$.
Since $(I \cap J)^{2} \subseteq I J=0$ and A is a semiprime ring, it follows that $I \cap J=0$.
But $(I+J) / I$ is an ideal of A / I and $A / I \in \rho$ because I is a nonzero ideal of A and $A \in \rho^{*}$.
Thus, since ρ being a supernilpotent radical is hereditary, it follows that $(I+J) / I \in \rho$.
But $(I+J) / I \simeq J /(I \cap J) \simeq J$ since $I \cap J=0$. Thus $J \in \rho$. On the other hand, since $\mathcal{S}(\rho)$ is hereditary and $J \triangleleft A \in \mathcal{S}(\rho)$, it follows that $J \in \mathcal{S}(\rho)$. Thus $J \in \rho \cap \mathcal{S}(\rho)=\{0\}$ which implies that $J=0$.

Definition

A ring A is prime essential if and only if A is semiprime and no nonzero ideal of A is a prime ring. In what follows the class of all prime essential rings will be denoted by \mathcal{E}.

Definition

A ring A is prime essential if and only if A is semiprime and no nonzero ideal of A is a prime ring. In what follows the class of all prime essential rings will be denoted by \mathcal{E}.

Theorem

(B. J. Gardner, P. Stewart) Let A be a nonzero semiprime ring,

Definition

A ring A is prime essential if and only if A is semiprime and no nonzero ideal of A is a prime ring. In what follows the class of all prime essential rings will be denoted by \mathcal{E}.

Theorem

(B. J. Gardner, P. Stewart) Let A be a nonzero semiprime ring,let $\kappa>1$ be a cardinal number greater than the cardinality of A

Definition

A ring A is prime essential if and only if A is semiprime and no nonzero ideal of A is a prime ring. In what follows the class of all prime essential rings will be denoted by \mathcal{E}.

Theorem

(B. J. Gardner, P. Stewart) Let A be a nonzero semiprime ring,let $\kappa>1$ be a cardinal number greater than the cardinality of A and let $W(\kappa)$ be the set of all finite words made from a (well-ordered) alphabet of cardinality κ, lexicographically ordered.

Definition

A ring A is prime essential if and only if A is semiprime and no nonzero ideal of A is a prime ring. In what follows the class of all prime essential rings will be denoted by \mathcal{E}.

Theorem

(B. J. Gardner, P. Stewart) Let A be a nonzero semiprime ring,let $\kappa>1$ be a cardinal number greater than the cardinality of A and let $W(\kappa)$ be the set of all finite words made from a (well-ordered) alphabet of cardinality κ, lexicographically ordered. Then $W(\kappa)$ is a semi-group with multiplication defined by $x y=\max \{x, y\}$ and we have the following

Definition

A ring A is prime essential if and only if A is semiprime and no nonzero ideal of A is a prime ring. In what follows the class of all prime essential rings will be denoted by \mathcal{E}.

Theorem

(B. J. Gardner, P. Stewart) Let A be a nonzero semiprime ring,let $\kappa>1$ be a cardinal number greater than the cardinality of A and let $W(\kappa)$ be the set of all finite words made from a (well-ordered) alphabet of cardinality κ, lexicographically ordered. Then $W(\kappa)$ is a semi-group with multiplication defined by $x y=\max \{x, y\}$ and we have the following
(1) The semigroup ring $A(W(\kappa))$ is a subdirect sum of copies of A.

Definition

A ring A is prime essential if and only if A is semiprime and no nonzero ideal of A is a prime ring. In what follows the class of all prime essential rings will be denoted by \mathcal{E}.

Theorem

(B. J. Gardner, P. Stewart) Let A be a nonzero semiprime ring,let $\kappa>1$ be a cardinal number greater than the cardinality of A and let $W(\kappa)$ be the set of all finite words made from a (well-ordered) alphabet of cardinality κ, lexicographically ordered. Then $W(\kappa)$ is a semi-group with multiplication defined by $x y=\max \{x, y\}$ and we have the following
(1) The semigroup ring $A(W(\kappa))$ is a subdirect sum of copies of A.
(2) $A(W(\kappa))$ is prime essential.

Definition

A ring A is prime essential if and only if A is semiprime and no nonzero ideal of A is a prime ring. In what follows the class of all prime essential rings will be denoted by \mathcal{E}.

Theorem

(B. J. Gardner, P. Stewart) Let A be a nonzero semiprime ring,let $\kappa>1$ be a cardinal number greater than the cardinality of A and let $W(\kappa)$ be the set of all finite words made from a (well-ordered) alphabet of cardinality κ, lexicographically ordered. Then $W(\kappa)$ is a semi-group with multiplication defined by $x y=\max \{x, y\}$ and we have the following
(1) The semigroup ring $A(W(\kappa))$ is a subdirect sum of copies of A.
(2) $A(W(\kappa))$ is prime essential.
(3) Every prime homomorphic image $A(W(\kappa)) / Q$ of $A(W(\kappa))$ is isomorphic to some prime homomorphic image A / P of A.

Theorem
(B. J. Gardner, P. Stewart) A supernilpotent radical ρ is a special radical if and only if every prime esssential ρ-semisimple ring is a subdirect sum of prime ρ-semisimple rings.

Theorem

(B. J. Gardner, P. Stewart) A supernilpotent radical ρ is a special radical if and only if every prime esssential ρ-semisimple ring is a subdirect sum of prime ρ-semisimple rings.

Definition

A prime ring A is called a $*$-ring if $A / I \in \beta$ for every $0 \neq I \triangleleft A$.

Theorem

(B. J. Gardner, P. Stewart) A supernilpotent radical ρ is a special radical if and only if every prime esssential ρ-semisimple ring is a subdirect sum of prime ρ-semisimple rings.

Definition

A prime ring A is called a $*$-ring if $A / I \in \beta$ for every $0 \neq I \triangleleft A$.

Theorem

If ρ is a supernilpotent radical whose semisimple class $\mathcal{S}(\rho)$ contains a nonzero nonsimple *-ring without minimal ideals, then $\mathcal{L}\left(\rho^{*}\right)$ is a nonspecial radical and consequently $\mathcal{L}\left(\rho^{*}\right) \neq \rho_{\varphi}$.

Proof.

Let ρ be a supernilpotent radical and let a nonzero nonsimple $*$-ring A without minimal ideals be in $\mathcal{S}(\rho)$. Then $A \in \rho^{*} \cap \mathcal{S}(\rho)$.

Proof.

Let ρ be a supernilpotent radical and let a nonzero nonsimple $*$-ring A without minimal ideals be in $\mathcal{S}(\rho)$. Then $A \in \rho^{*} \cap \mathcal{S}(\rho)$.
Let $\kappa>1$ be a cardinal number greater than the cardinality of A

Proof.

Let ρ be a supernilpotent radical and let a nonzero nonsimple $*$-ring A without minimal ideals be in $\mathcal{S}(\rho)$. Then $A \in \rho^{*} \cap \mathcal{S}(\rho)$.
Let $\kappa>1$ be a cardinal number greater than the cardinality of A and let $A(W(\kappa))$ be the semigroup ring constructed in Theorem 3.

Proof.

Let ρ be a supernilpotent radical and let a nonzero nonsimple $*$-ring A without minimal ideals be in $\mathcal{S}(\rho)$. Then $A \in \rho^{*} \cap \mathcal{S}(\rho)$.
Let $\kappa>1$ be a cardinal number greater than the cardinality of A and let $A(W(\kappa))$ be the semigroup ring constructed in Theorem 3. Then, by Theorem 3, $A(W(\kappa))$ is prime essential and $A(W(\kappa))$ is a subdirect sum of copies of A.

Proof.

Let ρ be a supernilpotent radical and let a nonzero nonsimple $*$-ring A without minimal ideals be in $\mathcal{S}(\rho)$. Then $A \in \rho^{*} \cap \mathcal{S}(\rho)$.
Let $\kappa>1$ be a cardinal number greater than the cardinality of A and let $A(W(\kappa))$ be the semigroup ring constructed in Theorem 3. Then, by Theorem 3, $A(W(\kappa))$ is prime essential and $A(W(\kappa))$ is a subdirect sum of copies of A. But, since $A \in \mathcal{S}(\rho)$, it follows that $A(W(\kappa)) \in \mathcal{S}(\rho)$ because $\mathcal{S}(\rho)$ is closed under subdirect sums.

Proof.

Let ρ be a supernilpotent radical and let a nonzero nonsimple $*$-ring A without minimal ideals be in $\mathcal{S}(\rho)$. Then $A \in \rho^{*} \cap \mathcal{S}(\rho)$.
Let $\kappa>1$ be a cardinal number greater than the cardinality of A and let $A(W(\kappa))$ be the semigroup ring constructed in Theorem 3. Then, by Theorem 3, $A(W(\kappa))$ is prime essential and $A(W(\kappa))$ is a subdirect sum of copies of A. But, since $A \in \mathcal{S}(\rho)$, it follows that $A(W(\kappa)) \in \mathcal{S}(\rho)$ because $\mathcal{S}(\rho)$ is closed under subdirect sums. So $A(W(\kappa)) \in \mathcal{S}(\rho) \cap \mathcal{E}$.

Proof.

Let ρ be a supernilpotent radical and let a nonzero nonsimple $*$-ring A without minimal ideals be in $\mathcal{S}(\rho)$. Then $A \in \rho^{*} \cap \mathcal{S}(\rho)$.
Let $\kappa>1$ be a cardinal number greater than the cardinality of A and let $A(W(\kappa))$ be the semigroup ring constructed in Theorem 3. Then, by Theorem 3, $A(W(\kappa))$ is prime essential and $A(W(\kappa))$ is a subdirect sum of copies of A. But, since $A \in \mathcal{S}(\rho)$, it follows that $A(W(\kappa)) \in \mathcal{S}(\rho)$ because $\mathcal{S}(\rho)$ is closed under subdirect sums. So $A(W(\kappa)) \in \mathcal{S}(\rho) \cap \mathcal{E}$. We will now show that $A(W(\kappa)) \in \mathcal{S}\left(\mathcal{L}\left(\rho^{*}\right)\right)$.

Proof.

Let ρ be a supernilpotent radical and let a nonzero nonsimple $*$-ring A without minimal ideals be in $\mathcal{S}(\rho)$. Then $A \in \rho^{*} \cap \mathcal{S}(\rho)$.
Let $\kappa>1$ be a cardinal number greater than the cardinality of A and let $A(W(\kappa))$ be the semigroup ring constructed in Theorem 3. Then, by Theorem 3, $A(W(\kappa))$ is prime essential and $A(W(\kappa))$ is a subdirect sum of copies of A. But, since $A \in \mathcal{S}(\rho)$, it follows that $A(W(\kappa)) \in \mathcal{S}(\rho)$ because $\mathcal{S}(\rho)$ is closed under subdirect sums. So $A(W(\kappa)) \in \mathcal{S}(\rho) \cap \mathcal{E}$. We will now show that $A(W(\kappa)) \in \mathcal{S}\left(\mathcal{L}\left(\rho^{*}\right)\right)$. It follows from Le Roux Theorem 2 that $\mathcal{L}\left(\rho^{*}\right)=\mathcal{U}(\sigma)$, where σ is the class of all rings without nonzero ideals in ρ^{*}.

Proof.

Let ρ be a supernilpotent radical and let a nonzero nonsimple $*$-ring A without minimal ideals be in $\mathcal{S}(\rho)$. Then $A \in \rho^{*} \cap \mathcal{S}(\rho)$.
Let $\kappa>1$ be a cardinal number greater than the cardinality of A and let $A(W(\kappa))$ be the semigroup ring constructed in Theorem 3. Then, by Theorem 3, $A(W(\kappa))$ is prime essential and $A(W(\kappa))$ is a subdirect sum of copies of A. But, since $A \in \mathcal{S}(\rho)$, it follows that $A(W(\kappa)) \in \mathcal{S}(\rho)$ because $\mathcal{S}(\rho)$ is closed under subdirect sums. So $A(W(\kappa)) \in \mathcal{S}(\rho) \cap \mathcal{E}$. We will now show that $A(W(\kappa)) \in \mathcal{S}\left(\mathcal{L}\left(\rho^{*}\right)\right)$. It follows from Le Roux Theorem 2 that $\mathcal{L}\left(\rho^{*}\right)=\mathcal{U}(\sigma)$, where σ is the class of all rings without nonzero ideals in ρ^{*}. Since ρ is a supernilpotent radical, it follows from Le Roux Lemma 3 that ρ^{*} is hereditary and it contains all the nilpotent rings.

Proof.

Let ρ be a supernilpotent radical and let a nonzero nonsimple $*$-ring A without minimal ideals be in $\mathcal{S}(\rho)$. Then $A \in \rho^{*} \cap \mathcal{S}(\rho)$.
Let $\kappa>1$ be a cardinal number greater than the cardinality of A and let $A(W(\kappa))$ be the semigroup ring constructed in Theorem 3. Then, by Theorem 3, $A(W(\kappa))$ is prime essential and $A(W(\kappa))$ is a subdirect sum of copies of A. But, since $A \in \mathcal{S}(\rho)$, it follows that $A(W(\kappa)) \in \mathcal{S}(\rho)$ because $\mathcal{S}(\rho)$ is closed under subdirect sums. So $A(W(\kappa)) \in \mathcal{S}(\rho) \cap \mathcal{E}$. We will now show that $A(W(\kappa)) \in \mathcal{S}\left(\mathcal{L}\left(\rho^{*}\right)\right)$. It follows from Le Roux Theorem 2 that $\mathcal{L}\left(\rho^{*}\right)=\mathcal{U}(\sigma)$, where σ is the class of all rings without nonzero ideals in ρ^{*}. Since ρ is a supernilpotent radical, it follows from Le Roux Lemma 3 that ρ^{*} is hereditary and it contains all the nilpotent rings. Then it follows from Le Roux Theorem 1 that σ is a weakly special class.

Proof.

Let ρ be a supernilpotent radical and let a nonzero nonsimple $*$-ring A without minimal ideals be in $\mathcal{S}(\rho)$. Then $A \in \rho^{*} \cap \mathcal{S}(\rho)$.
Let $\kappa>1$ be a cardinal number greater than the cardinality of A and let $A(W(\kappa))$ be the semigroup ring constructed in Theorem 3. Then, by Theorem 3, $A(W(\kappa))$ is prime essential and $A(W(\kappa))$ is a subdirect sum of copies of A. But, since $A \in \mathcal{S}(\rho)$, it follows that $A(W(\kappa)) \in \mathcal{S}(\rho)$ because $\mathcal{S}(\rho)$ is closed under subdirect sums. So $A(W(\kappa)) \in \mathcal{S}(\rho) \cap \mathcal{E}$. We will now show that $A(W(\kappa)) \in \mathcal{S}\left(\mathcal{L}\left(\rho^{*}\right)\right)$. It follows from Le Roux Theorem 2 that $\mathcal{L}\left(\rho^{*}\right)=\mathcal{U}(\sigma)$, where σ is the class of all rings without nonzero ideals in ρ^{*}. Since ρ is a supernilpotent radical, it follows from Le Roux Lemma 3 that ρ^{*} is hereditary and it contains all the nilpotent rings. Then it follows from Le Roux Theorem 1 that σ is a weakly special class. Thus $\sigma \subseteq \mathcal{S}(\mathcal{U}(\sigma))$.

Proof.

Let ρ be a supernilpotent radical and let a nonzero nonsimple $*$-ring A without minimal ideals be in $\mathcal{S}(\rho)$. Then $A \in \rho^{*} \cap \mathcal{S}(\rho)$.
Let $\kappa>1$ be a cardinal number greater than the cardinality of A and let $A(W(\kappa))$ be the semigroup ring constructed in Theorem 3. Then, by Theorem 3, $A(W(\kappa))$ is prime essential and $A(W(\kappa))$ is a subdirect sum of copies of A. But, since $A \in \mathcal{S}(\rho)$, it follows that $A(W(\kappa)) \in \mathcal{S}(\rho)$ because $\mathcal{S}(\rho)$ is closed under subdirect sums. So $A(W(\kappa)) \in \mathcal{S}(\rho) \cap \mathcal{E}$. We will now show that $A(W(\kappa)) \in \mathcal{S}\left(\mathcal{L}\left(\rho^{*}\right)\right)$.
It follows from Le Roux Theorem 2 that $\mathcal{L}\left(\rho^{*}\right)=\mathcal{U}(\sigma)$, where σ is the class of all rings without nonzero ideals in ρ^{*}. Since ρ is a supernilpotent radical, it follows from Le Roux Lemma 3 that ρ^{*} is hereditary and it contains all the nilpotent rings. Then it follows from Le Roux Theorem 1 that σ is a weakly special class. Thus $\sigma \subseteq \mathcal{S}(\mathcal{U}(\sigma))$. It therefore suffices to show that $A(W(\kappa))$ has no nonzero ideals in ρ^{*}.

Proof.

Let ρ be a supernilpotent radical and let a nonzero nonsimple $*$-ring A without minimal ideals be in $\mathcal{S}(\rho)$. Then $A \in \rho^{*} \cap \mathcal{S}(\rho)$.
Let $\kappa>1$ be a cardinal number greater than the cardinality of A and let $A(W(\kappa))$ be the semigroup ring constructed in Theorem 3. Then, by Theorem 3, $A(W(\kappa))$ is prime essential and $A(W(\kappa))$ is a subdirect sum of copies of A. But, since $A \in \mathcal{S}(\rho)$, it follows that $A(W(\kappa)) \in \mathcal{S}(\rho)$ because $\mathcal{S}(\rho)$ is closed under subdirect sums. So $A(W(\kappa)) \in \mathcal{S}(\rho) \cap \mathcal{E}$. We will now show that $A(W(\kappa)) \in \mathcal{S}\left(\mathcal{L}\left(\rho^{*}\right)\right)$.
It follows from Le Roux Theorem 2 that $\mathcal{L}\left(\rho^{*}\right)=\mathcal{U}(\sigma)$, where σ is the class of all rings without nonzero ideals in ρ^{*}. Since ρ is a supernilpotent radical, it follows from Le Roux Lemma 3 that ρ^{*} is hereditary and it contains all the nilpotent rings. Then it follows from Le Roux Theorem 1 that σ is a weakly special class. Thus $\sigma \subseteq \mathcal{S}(\mathcal{U}(\sigma))$. It therefore suffices to show that $A(W(\kappa))$ has no nonzero ideals in ρ^{*}. Suppose $0 \neq I \triangleleft A(W(\kappa))$ and $I \in \rho^{*}$.

Proof.

Let ρ be a supernilpotent radical and let a nonzero nonsimple $*$-ring A without minimal ideals be in $\mathcal{S}(\rho)$. Then $A \in \rho^{*} \cap \mathcal{S}(\rho)$.
Let $\kappa>1$ be a cardinal number greater than the cardinality of A and let $A(W(\kappa))$ be the semigroup ring constructed in Theorem 3. Then, by Theorem 3, $A(W(\kappa))$ is prime essential and $A(W(\kappa))$ is a subdirect sum of copies of A. But, since $A \in \mathcal{S}(\rho)$, it follows that $A(W(\kappa)) \in \mathcal{S}(\rho)$ because $\mathcal{S}(\rho)$ is closed under subdirect sums. So $A(W(\kappa)) \in \mathcal{S}(\rho) \cap \mathcal{E}$. We will now show that $A(W(\kappa)) \in \mathcal{S}\left(\mathcal{L}\left(\rho^{*}\right)\right)$.
It follows from Le Roux Theorem 2 that $\mathcal{L}\left(\rho^{*}\right)=\mathcal{U}(\sigma)$, where σ is the class of all rings without nonzero ideals in ρ^{*}. Since ρ is a supernilpotent radical, it follows from Le Roux Lemma 3 that ρ^{*} is hereditary and it contains all the nilpotent rings. Then it follows from Le Roux Theorem 1 that σ is a weakly special class. Thus $\sigma \subseteq \mathcal{S}(\mathcal{U}(\sigma))$. It therefore suffices to show that $A(W(\kappa))$ has no nonzero ideals in ρ^{*}. Suppose $0 \neq I \triangleleft A(W(\kappa))$ and $I \in \rho^{*}$. Then it follows from Corollary that either $I \in \rho$ or I is a prime ring.

Proof.

Let ρ be a supernilpotent radical and let a nonzero nonsimple $*$-ring A without minimal ideals be in $\mathcal{S}(\rho)$. Then $A \in \rho^{*} \cap \mathcal{S}(\rho)$.
Let $\kappa>1$ be a cardinal number greater than the cardinality of A and let $A(W(\kappa))$ be the semigroup ring constructed in Theorem 3. Then, by Theorem 3, $A(W(\kappa))$ is prime essential and $A(W(\kappa))$ is a subdirect sum of copies of A. But, since $A \in \mathcal{S}(\rho)$, it follows that $A(W(\kappa)) \in \mathcal{S}(\rho)$ because $\mathcal{S}(\rho)$ is closed under subdirect sums. So $A(W(\kappa)) \in \mathcal{S}(\rho) \cap \mathcal{E}$. We will now show that $A(W(\kappa)) \in \mathcal{S}\left(\mathcal{L}\left(\rho^{*}\right)\right)$.
It follows from Le Roux Theorem 2 that $\mathcal{L}\left(\rho^{*}\right)=\mathcal{U}(\sigma)$, where σ is the class of all rings without nonzero ideals in ρ^{*}. Since ρ is a supernilpotent radical, it follows from Le Roux Lemma 3 that ρ^{*} is hereditary and it contains all the nilpotent rings. Then it follows from Le Roux Theorem 1 that σ is a weakly special class. Thus $\sigma \subseteq \mathcal{S}(\mathcal{U}(\sigma))$. It therefore suffices to show that $A(W(\kappa))$ has no nonzero ideals in ρ^{*}. Suppose $0 \neq I \triangleleft A(W(\kappa))$ and $I \in \rho^{*}$. Then it follows from Corollary that either $I \in \rho$ or I is a prime ring. But none of the two cases can occur because $0 \neq I \triangleleft A(W(\kappa))$ and $A(W(\kappa)) \in \mathcal{S}(\rho) \cap \mathcal{E}$.

Proof.

Let ρ be a supernilpotent radical and let a nonzero nonsimple $*$-ring A without minimal ideals be in $\mathcal{S}(\rho)$. Then $A \in \rho^{*} \cap \mathcal{S}(\rho)$.
Let $\kappa>1$ be a cardinal number greater than the cardinality of A and let $A(W(\kappa))$ be the semigroup ring constructed in Theorem 3. Then, by Theorem 3, $A(W(\kappa))$ is prime essential and $A(W(\kappa))$ is a subdirect sum of copies of A. But, since $A \in \mathcal{S}(\rho)$, it follows that $A(W(\kappa)) \in \mathcal{S}(\rho)$ because $\mathcal{S}(\rho)$ is closed under subdirect sums. So $A(W(\kappa)) \in \mathcal{S}(\rho) \cap \mathcal{E}$. We will now show that $A(W(\kappa)) \in \mathcal{S}\left(\mathcal{L}\left(\rho^{*}\right)\right)$.
It follows from Le Roux Theorem 2 that $\mathcal{L}\left(\rho^{*}\right)=\mathcal{U}(\sigma)$, where σ is the class of all rings without nonzero ideals in ρ^{*}. Since ρ is a supernilpotent radical, it follows from Le Roux Lemma 3 that ρ^{*} is hereditary and it contains all the nilpotent rings. Then it follows from Le Roux Theorem 1 that σ is a weakly special class. Thus $\sigma \subseteq \mathcal{S}(\mathcal{U}(\sigma))$. It therefore suffices to show that $A(W(\kappa))$ has no nonzero ideals in ρ^{*}. Suppose $0 \neq I \triangleleft A(W(\kappa))$ and $I \in \rho^{*}$. Then it follows from Corollary that either $I \in \rho$ or I is a prime ring. But none of the two cases can occur because $0 \neq I \triangleleft A(W(\kappa))$ and $A(W(\kappa)) \in \mathcal{S}(\rho) \cap \mathcal{E}$. Thus $A(W(\kappa)) \in \sigma$ and consequently $A(W(\kappa)) \in \mathcal{S}\left(\mathcal{L}\left(\rho^{*}\right)\right) \cap \mathcal{E}$

Proof.

Now, if $\mathcal{L}\left(\rho^{*}\right)$ were a special radical, then by Theorem 4, $A(W(\kappa))$ would contain a family $\left\{I_{\lambda}\right\}_{\lambda \in \Lambda}$ of ideals I_{λ} such that $\cap I_{\lambda \in \Lambda}=0$ and $A(W(\kappa)) / I_{\lambda} \in \mathcal{S}\left(\mathcal{L}\left(\rho^{*}\right)\right) \cap \pi$, where π denotes the class of all prime rings.

Proof.

Now, if $\mathcal{L}\left(\rho^{*}\right)$ were a special radical, then by Theorem 4, $\boldsymbol{A}(W(\kappa))$ would contain a family $\left\{I_{\lambda}\right\}_{\lambda \in \Lambda}$ of ideals I_{λ} such that $\cap I_{\lambda \in \Lambda}=0$ and $A(W(\kappa)) / I_{\lambda} \in \mathcal{S}\left(\mathcal{L}\left(\rho^{*}\right)\right) \cap \pi$, where π denotes the class of all prime rings. Consequently, $A(W(\kappa)) / I_{\lambda}$ would be a nonzero prime homomorphic image of $A(W(\kappa))$ for at least one I_{λ}.

Proof.

Now, if $\mathcal{L}\left(\rho^{*}\right)$ were a special radical, then by Theorem 4, $\boldsymbol{A}(W(\kappa))$ would contain a family $\left\{I_{\lambda}\right\}_{\lambda \in \Lambda}$ of ideals I_{λ} such that $\cap_{\lambda \in \Lambda} I_{\lambda}=0$ and $A(W(\kappa)) / I_{\lambda} \in \mathcal{S}\left(\mathcal{L}\left(\rho^{*}\right)\right) \cap \pi$, where π denotes the class of all prime rings. Consequently, $A(W(\kappa)) / I_{\lambda}$ would be a nonzero prime homomorphic image of $A(W(\kappa))$ for at least one I_{λ}. Then it follows from the third part of Theorem 3 that $A(W(\kappa)) / I_{\lambda} \simeq A / P$ for some ideal P of A.

Proof.

Now, if $\mathcal{L}\left(\rho^{*}\right)$ were a special radical, then by Theorem 4, $\boldsymbol{A}(W(\kappa))$ would contain a family $\left\{I_{\lambda}\right\}_{\lambda \in \Lambda}$ of ideals I_{λ} such that $\cap I_{\lambda \in \Lambda}=0$ and $A(W(\kappa)) / I_{\lambda} \in \mathcal{S}\left(\mathcal{L}\left(\rho^{*}\right)\right) \cap \pi$, where π denotes the class of all prime rings. Consequently, $A(W(\kappa)) / I_{\lambda}$ would be a nonzero prime homomorphic image of $A(W(\kappa))$ for at least one I_{λ}. Then it follows from the third part of Theorem 3 that $A(W(\kappa)) / I_{\lambda} \simeq A / P$ for some ideal P of A. Thus $0 \neq A / P \in \pi$ and, as A is a nonzero $*$-ring, it follows that $P=0$.

Proof.

Now, if $\mathcal{L}\left(\rho^{*}\right)$ were a special radical, then by Theorem 4, $\boldsymbol{A}(W(\kappa))$ would contain a family $\left\{I_{\lambda}\right\}_{\lambda \in \Lambda}$ of ideals I_{λ} such that $\cap_{\lambda \in \Lambda} I_{\lambda}=0$ and $A(W(\kappa)) / I_{\lambda} \in \mathcal{S}\left(\mathcal{L}\left(\rho^{*}\right)\right) \cap \pi$, where π denotes the class of all prime rings. Consequently, $A(W(\kappa)) / I_{\lambda}$ would be a nonzero prime homomorphic image of $A(W(\kappa))$ for at least one I_{λ}. Then it follows from the third part of Theorem 3 that $A(W(\kappa)) / I_{\lambda} \simeq A / P$ for some ideal P of A. Thus $0 \neq A / P \in \pi$ and, as A is a nonzero $*$-ring, it follows that $P=0$. Thus $A(W(\kappa)) / I_{\lambda} \simeq A$ and consequently $A \in \mathcal{S}\left(\mathcal{L}\left(\rho^{*}\right)\right)$.

Proof.

Now, if $\mathcal{L}\left(\rho^{*}\right)$ were a special radical, then by Theorem 4, $A(W(\kappa))$ would contain a family $\left\{I_{\lambda}\right\}_{\lambda \in \Lambda}$ of ideals I_{λ} such that $\cap_{\lambda \in \Lambda} I_{\lambda}=0$ and $A(W(\kappa)) / I_{\lambda} \in \mathcal{S}\left(\mathcal{L}\left(\rho^{*}\right)\right) \cap \pi$, where π denotes the class of all prime rings. Consequently, $A(W(\kappa)) / I_{\lambda}$ would be a nonzero prime homomorphic image of $A(W(\kappa))$ for at least one I_{λ}. Then it follows from the third part of Theorem 3 that $A(W(\kappa)) / I_{\lambda} \simeq A / P$ for some ideal P of A. Thus $0 \neq A / P \in \pi$ and, as A is a nonzero $*$-ring, it follows that $P=0$. Thus $A(W(\kappa)) / I_{\lambda} \simeq A$ and consequently $A \in \mathcal{S}\left(\mathcal{L}\left(\rho^{*}\right)\right)$. On the other hand, $A \in \rho^{*} \subseteq \mathcal{L}\left(\rho^{*}\right)$.

Proof.

Now, if $\mathcal{L}\left(\rho^{*}\right)$ were a special radical, then by Theorem 4, $A(W(\kappa))$ would contain a family $\left\{I_{\lambda}\right\}_{\lambda \in \Lambda}$ of ideals I_{λ} such that $\cap_{\lambda \in \Lambda} I_{\lambda}=0$ and $A(W(\kappa)) / I_{\lambda} \in \mathcal{S}\left(\mathcal{L}\left(\rho^{*}\right)\right) \cap \pi$, where π denotes the class of all prime rings. Consequently, $A(W(\kappa)) / I_{\lambda}$ would be a nonzero prime homomorphic image of $A(W(\kappa))$ for at least one I_{λ}. Then it follows from the third part of Theorem 3 that $A(W(\kappa)) / I_{\lambda} \simeq A / P$ for some ideal P of A. Thus $0 \neq A / P \in \pi$ and, as A is a nonzero $*$-ring, it follows that $P=0$. Thus $A(W(\kappa)) / I_{\lambda} \simeq A$ and consequently $A \in \mathcal{S}\left(\mathcal{L}\left(\rho^{*}\right)\right)$. On the other hand, $A \in \rho^{*} \subseteq \mathcal{L}\left(\rho^{*}\right)$. Thus
$0 \neq A \in \mathcal{L}\left(\rho^{*}\right) \cap \mathcal{S}\left(\mathcal{L}\left(\rho^{*}\right)\right)=\{0\}$ and we have a contradiction.

Proof.

Now, if $\mathcal{L}\left(\rho^{*}\right)$ were a special radical, then by Theorem 4, $A(W(\kappa))$ would contain a family $\left\{I_{\lambda}\right\}_{\lambda \in \Lambda}$ of ideals I_{λ} such that $\cap I_{\lambda \in \Lambda}=0$ and $A(W(\kappa)) / I_{\lambda} \in \mathcal{S}\left(\mathcal{L}\left(\rho^{*}\right)\right) \cap \pi$, where π denotes the class of all prime rings. Consequently, $A(W(\kappa)) / I_{\lambda}$ would be a nonzero prime homomorphic image of $A(W(\kappa))$ for at least one I_{λ}. Then it follows from the third part of Theorem 3 that $A(W(\kappa)) / I_{\lambda} \simeq A / P$ for some ideal P of A. Thus $0 \neq A / P \in \pi$ and, as A is a nonzero $*$-ring, it follows that $P=0$. Thus $A(W(\kappa)) / I_{\lambda} \simeq A$ and consequently $A \in \mathcal{S}\left(\mathcal{L}\left(\rho^{*}\right)\right)$. On the other hand, $A \in \rho^{*} \subseteq \mathcal{L}\left(\rho^{*}\right)$. Thus
$0 \neq A \in \mathcal{L}\left(\rho^{*}\right) \cap \mathcal{S}\left(\mathcal{L}\left(\rho^{*}\right)\right)=\{0\}$ and we have a contradiction. Thus $\mathcal{L}\left(\rho^{*}\right)$ is a nonspecial radical.

Proof.

Now, if $\mathcal{L}\left(\rho^{*}\right)$ were a special radical, then by Theorem 4, $A(W(\kappa))$ would contain a family $\left\{I_{\lambda}\right\}_{\lambda \in \Lambda}$ of ideals I_{λ} such that $\cap I_{\lambda}=0$ and $A(W(\kappa)) / I_{\lambda} \in \mathcal{S}\left(\mathcal{L}\left(\rho^{*}\right)\right) \cap \pi$, where π denotes the class of all prime rings. Consequently, $A(W(\kappa)) / I_{\lambda}$ would be a nonzero prime homomorphic image of $A(W(\kappa))$ for at least one I_{λ}. Then it follows from the third part of Theorem 3 that $A(W(\kappa)) / I_{\lambda} \simeq A / P$ for some ideal P of A. Thus $0 \neq A / P \in \pi$ and, as A is a nonzero $*$-ring, it follows that $P=0$. Thus $A(W(\kappa)) / I_{\lambda} \simeq A$ and consequently $A \in \mathcal{S}\left(\mathcal{L}\left(\rho^{*}\right)\right)$. On the other hand, $A \in \rho^{*} \subseteq \mathcal{L}\left(\rho^{*}\right)$. Thus
$0 \neq A \in \mathcal{L}\left(\rho^{*}\right) \cap \mathcal{S}\left(\mathcal{L}\left(\rho^{*}\right)\right)=\{0\}$ and we have a contradiction. Thus $\mathcal{L}\left(\rho^{*}\right)$ is a nonspecial radical. Now, since ρ_{φ} is a special radical, it follows that $\mathcal{L}\left(\rho^{*}\right) \neq \rho_{\varphi}$ which ends the proof.

Example

(E.Sasiada, A.Sulinski) Let F be a field of characteristic 0 which has an authomorphism S such that no integral power of S is the identity automorphism.

Example

(E.Sasiada, A.Sulinski) Let F be a field of characteristic 0 which has an authomorphism S such that no integral power of S is the identity automorphism. For example, F might be a field generated by the real numbers and an infinite number of independent variables labelled ... $x_{-2}, x_{-1}, x_{0}, x_{1}, x_{2}, \ldots$ and S the automorphism which leaves the real numbers alone and which sends x_{i} into x_{i+1} for every i.

Example

(E.Sasiada, A.Sulinski) Let F be a field of characteristic 0 which has an authomorphism S such that no integral power of S is the identity automorphism. For example, F might be a field generated by the real numbers and an infinite number of independent variables labelled ... $x_{-2}, x_{-1}, x_{0}, x_{1}, x_{2}, \ldots$ and S the automorphism which leaves the real numbers alone and which sends x_{i} into x_{i+1} for every i. Let R be the set of all polynomials in an indeterminate z of the form $a_{0}+z a_{1}+z^{2} a_{2}+\ldots+z^{n} a_{n}$, where $a_{i} \in F$.

Example

(E.Sasiada, A.Sulinski) Let F be a field of characteristic 0 which has an authomorphism S such that no integral power of S is the identity automorphism. For example, F might be a field generated by the real numbers and an infinite number of independent variables labelled ... $x_{-2}, x_{-1}, x_{0}, x_{1}, x_{2}, \ldots$ and S the automorphism which leaves the real numbers alone and which sends x_{i} into x_{i+1} for every i. Let R be the set of all polynomials in an indeterminate z of the form $a_{0}+z a_{1}+z^{2} a_{2}+\ldots+z^{n} a_{n}$, where $a_{i} \in F$. Addition and multiplication of such polynomials is defined in the usual way except that z does not commute with the coefficients a.

Example

(E.Sasiada, A.Sulinski) Let F be a field of characteristic 0 which has an authomorphism S such that no integral power of S is the identity automorphism. For example, F might be a field generated by the real numbers and an infinite number of independent variables labelled ... $x_{-2}, x_{-1}, x_{0}, x_{1}, x_{2}, \ldots$ and S the automorphism which leaves the real numbers alone and which sends x_{i} into x_{i+1} for every i. Let R be the set of all polynomials in an indeterminate z of the form $a_{0}+z a_{1}+z^{2} a_{2}+\ldots+z^{n} a_{n}$, where $a_{i} \in F$. Addition and multiplication of such polynomials is defined in the usual way except that z does not commute with the coefficients a. We define $a z=z S(a)$, where $S(a)$ is the image of a under the authomorphism S.

Example

(E.Sasiada, A.Sulinski) Let F be a field of characteristic 0 which has an authomorphism S such that no integral power of S is the identity automorphism. For example, F might be a field generated by the real numbers and an infinite number of independent variables labelled ... $x_{-2}, x_{-1}, x_{0}, x_{1}, x_{2}, \ldots$ and S the automorphism which leaves the real numbers alone and which sends x_{i} into x_{i+1} for every i. Let R be the set of all polynomials in an indeterminate z of the form $a_{0}+z a_{1}+z^{2} a_{2}+\ldots+z^{n} a_{n}$, where $a_{i} \in F$. Addition and multiplication of such polynomials is defined in the usual way except that z does not commute with the coefficients a. We define $a z=z S(a)$, where $S(a)$ is the image of a under the authomorphism S.Then $a z^{m}=z S^{m}(a)$ for any positive integer m.

Example

(E.Sasiada, A.Sulinski) Let F be a field of characteristic 0 which has an authomorphism S such that no integral power of S is the identity automorphism. For example, F might be a field generated by the real numbers and an infinite number of independent variables labelled ... $x_{-2}, x_{-1}, x_{0}, x_{1}, x_{2}, \ldots$ and S the automorphism which leaves the real numbers alone and which sends x_{i} into x_{i+1} for every i. Let R be the set of all polynomials in an indeterminate z of the form
$a_{0}+z a_{1}+z^{2} a_{2}+\ldots+z^{n} a_{n}$, where $a_{i} \in F$. Addition and multiplication of such polynomials is defined in the usual way except that z does not commute with the coefficients a. We define $a z=z S(a)$, where $S(a)$ is the image of a under the authomorphism S.Then $a z^{m}=z S^{m}(a)$ for any positive integer m. Then this definition, together with the distributive law, makes R into a ring denoted by $F[z, S]$.

Example

(E.Sasiada, A.Sulinski) Let F be a field of characteristic 0 which has an authomorphism S such that no integral power of S is the identity automorphism. For example, F might be a field generated by the real numbers and an infinite number of independent variables labelled ... $x_{-2}, x_{-1}, x_{0}, x_{1}, x_{2}, \ldots$ and S the automorphism which leaves the real numbers alone and which sends x_{i} into x_{i+1} for every i. Let R be the set of all polynomials in an indeterminate z of the form $a_{0}+z a_{1}+z^{2} a_{2}+\ldots+z^{n} a_{n}$, where $a_{i} \in F$. Addition and multiplication of such polynomials is defined in the usual way except that z does not commute with the coefficients a. We define $a z=z S(a)$, where $S(a)$ is the image of a under the authomorphism S.Then $a z^{m}=z S^{m}(a)$ for any positive integer m. Then this definition, together with the distributive law, makes R into a ring denoted by $F[z, S]$. Then $F[z, S]$ is a noncommutative integral domain

Example

(E.Sasiada, A.Sulinski) Let F be a field of characteristic 0 which has an authomorphism S such that no integral power of S is the identity automorphism. For example, F might be a field generated by the real numbers and an infinite number of independent variables labelled ... $x_{-2}, x_{-1}, x_{0}, x_{1}, x_{2}, \ldots$ and S the automorphism which leaves the real numbers alone and which sends x_{i} into x_{i+1} for every i. Let R be the set of all polynomials in an indeterminate z of the form $a_{0}+z a_{1}+z^{2} a_{2}+\ldots+z^{n} a_{n}$, where $a_{i} \in F$. Addition and multiplication of such polynomials is defined in the usual way except that z does not commute with the coefficients a. We define $a z=z S(a)$, where $S(a)$ is the image of a under the authomorphism S.Then $a z^{m}=z S^{m}(a)$ for any positive integer m. Then this definition, together with the distributive law, makes R into a ring denoted by $F[z, S]$. Then $F[z, S]$ is a noncommutative integral domain and its every ideal $/$ is of the form $I=z^{k} R=R z^{k}$ for some positive integer k.

Example

(E.Sasiada, A.Sulinski) Let F be a field of characteristic 0 which has an authomorphism S such that no integral power of S is the identity automorphism. For example, F might be a field generated by the real numbers and an infinite number of independent variables labelled ... $x_{-2}, x_{-1}, x_{0}, x_{1}, x_{2}, \ldots$ and S the automorphism which leaves the real numbers alone and which sends x_{i} into x_{i+1} for every i. Let R be the set of all polynomials in an indeterminate z of the form $a_{0}+z a_{1}+z^{2} a_{2}+\ldots+z^{n} a_{n}$, where $a_{i} \in F$. Addition and multiplication of such polynomials is defined in the usual way except that z does not commute with the coefficients a. We define $a z=z S(a)$, where $S(a)$ is the image of a under the authomorphism S.Then $a z^{m}=z S^{m}(a)$ for any positive integer m. Then this definition, together with the distributive law, makes R into a ring denoted by $F[z, S]$. Then $F[z, S]$ is a noncommutative integral domain and its every ideal $/$ is of the form $I=z^{k} R=R z^{k}$ for some positive integer k. Moreover, $F[z, S]$ is a primitive ring

Example

(E.Sasiada, A.Sulinski) Let F be a field of characteristic 0 which has an authomorphism S such that no integral power of S is the identity automorphism. For example, F might be a field generated by the real numbers and an infinite number of independent variables labelled ... $x_{-2}, x_{-1}, x_{0}, x_{1}, x_{2}, \ldots$ and S the automorphism which leaves the real numbers alone and which sends x_{i} into x_{i+1} for every i. Let R be the set of all polynomials in an indeterminate z of the form $a_{0}+z a_{1}+z^{2} a_{2}+\ldots+z^{n} a_{n}$, where $a_{i} \in F$. Addition and multiplication of such polynomials is defined in the usual way except that z does not commute with the coefficients a. We define $a z=z S(a)$, where $S(a)$ is the image of a under the authomorphism S.Then $a z^{m}=z S^{m}(a)$ for any positive integer m. Then this definition, together with the distributive law, makes R into a ring denoted by $F[z, S]$. Then $F[z, S]$ is a noncommutative integral domain and its every ideal $/$ is of the form $I=z^{k} R=R z^{k}$ for some positive integer k. Moreover, $F[z, S]$ is a primitive ring and its subring $T=z R$ is not simple,

Example

(E.Sasiada, A.Sulinski) Let F be a field of characteristic 0 which has an authomorphism S such that no integral power of S is the identity automorphism. For example, F might be a field generated by the real numbers and an infinite number of independent variables labelled ... $x_{-2}, x_{-1}, x_{0}, x_{1}, x_{2}, \ldots$ and S the automorphism which leaves the real numbers alone and which sends x_{i} into x_{i+1} for every i. Let R be the set of all polynomials in an indeterminate z of the form $a_{0}+z a_{1}+z^{2} a_{2}+\ldots+z^{n} a_{n}$, where $a_{i} \in F$. Addition and multiplication of such polynomials is defined in the usual way except that z does not commute with the coefficients a. We define $a z=z S(a)$, where $S(a)$ is the image of a under the authomorphism S.Then $a z^{m}=z S^{m}$ (a) for any positive integer m. Then this definition, together with the distributive law, makes R into a ring denoted by $F[z, S]$. Then $F[z, S]$ is a noncommutative integral domain and its every ideal l is of the form $I=z^{k} R=R z^{k}$ for some positive integer k. Moreover, $F[z, S]$ is a primitive ring and its subring $T=z R$ is not simple, it does not contain minimal ideals

Example

(E.Sasiada, A.Sulinski) Let F be a field of characteristic 0 which has an authomorphism S such that no integral power of S is the identity automorphism. For example, F might be a field generated by the real numbers and an infinite number of independent variables labelled ... $x_{-2}, x_{-1}, x_{0}, x_{1}, x_{2}, \ldots$ and S the automorphism which leaves the real numbers alone and which sends x_{i} into x_{i+1} for every i. Let R be the set of all polynomials in an indeterminate z of the form $a_{0}+z a_{1}+z^{2} a_{2}+\ldots+z^{n} a_{n}$, where $a_{i} \in F$. Addition and multiplication of such polynomials is defined in the usual way except that z does not commute with the coefficients a. We define $a z=z S(a)$, where $S(a)$ is the image of a under the authomorphism S.Then $a z^{m}=z S^{m}$ (a) for any positive integer m. Then this definition, together with the distributive law, makes R into a ring denoted by $F[z, S]$. Then $F[z, S]$ is a noncommutative integral domain and its every ideal l is of the form $I=z^{k} R=R z^{k}$ for some positive integer k. Moreover, $F[z, S]$ is a primitive ring and its subring $T=z R$ is not simple, it does not contain minimal ideals and every proper homomorphic image of T is a nilpotent

Corollary

If ρ is replaced by $\beta, \mathcal{L}, \mathcal{N}$ or \mathcal{J}, then $\rho \nsubseteq \mathcal{L}\left(\rho^{*}\right) \nsubseteq \rho_{\varphi}$

Corollary

If ρ is replaced by $\beta, \mathcal{L}, \mathcal{N}$ or \mathcal{J}, then $\rho \nsubseteq \mathcal{L}\left(\rho^{*}\right) \nsubseteq \rho_{\varphi}$

Proof.

It is well known that $\beta, \mathcal{L}, \mathcal{N}$ and \mathcal{J} are special radicals and $\beta \subseteq \mathcal{L} \subseteq \mathcal{N}$ $\subseteq \mathcal{J}$.

Corollary

If ρ is replaced by $\beta, \mathcal{L}, \mathcal{N}$ or \mathcal{J}, then $\rho \nsubseteq \mathcal{L}\left(\rho^{*}\right) \varsubsetneqq \rho_{\varphi}$

Proof.

It is well known that $\beta, \mathcal{L}, \mathcal{N}$ and \mathcal{J} are special radicals and $\beta \subseteq \mathcal{L} \subseteq \mathcal{N}$ $\subseteq \mathcal{J}$. Let T be the ring of Example.

Corollary

If ρ is replaced by $\beta, \mathcal{L}, \mathcal{N}$ or \mathcal{J}, then $\rho \nsubseteq \mathcal{L}\left(\rho^{*}\right) \nsubseteq \rho_{\varphi}$

Proof.

It is well known that $\beta, \mathcal{L}, \mathcal{N}$ and \mathcal{J} are special radicals and $\beta \subseteq \mathcal{L} \subseteq \mathcal{N}$ $\subseteq \mathcal{J}$. Let T be the ring of Example. Clearly, T is a nonzero nonsimple *-ring without minimal ideals.

Corollary

If ρ is replaced by $\beta, \mathcal{L}, \mathcal{N}$ or \mathcal{J}, then $\rho \varsubsetneqq \mathcal{L}\left(\rho^{*}\right) \varsubsetneqq \rho_{\varphi}$

Proof.

It is well known that $\beta, \mathcal{L}, \mathcal{N}$ and \mathcal{J} are special radicals and $\beta \subseteq \mathcal{L} \subseteq \mathcal{N}$ $\subseteq \mathcal{J}$. Let T be the ring of Example. Clearly, T is a nonzero nonsimple *-ring without minimal ideals. Moreover, since T is an ideal of the primitive ring $F[z, S]$ and the class of all primitive rings is hereditary, it follows that T is primitive

Corollary

If ρ is replaced by $\beta, \mathcal{L}, \mathcal{N}$ or \mathcal{J}, then $\rho \nsubseteq \mathcal{L}\left(\rho^{*}\right) \varsubsetneqq \rho_{\varphi}$

Proof.

It is well known that $\beta, \mathcal{L}, \mathcal{N}$ and \mathcal{J} are special radicals and $\beta \subseteq \mathcal{L} \subseteq \mathcal{N}$ $\subseteq \mathcal{J}$. Let T be the ring of Example. Clearly, T is a nonzero nonsimple *-ring without minimal ideals. Moreover, since T is an ideal of the primitive ring $F[z, S]$ and the class of all primitive rings is hereditary, it follows that T is primitive and so $T \in \mathcal{S}(\mathcal{J}) \subseteq \mathcal{S}(\mathcal{N}) \subseteq \mathcal{S}(\mathcal{L}) \subseteq \mathcal{S}(\beta)$.

Corollary

If ρ is replaced by $\beta, \mathcal{L}, \mathcal{N}$ or \mathcal{J}, then $\rho \nsubseteq \mathcal{L}\left(\rho^{*}\right) \varsubsetneqq \rho_{\varphi}$

Proof.

It is well known that $\beta, \mathcal{L}, \mathcal{N}$ and \mathcal{J} are special radicals and $\beta \subseteq \mathcal{L} \subseteq \mathcal{N}$ $\subseteq \mathcal{J}$. Let T be the ring of Example. Clearly, T is a nonzero nonsimple *-ring without minimal ideals. Moreover, since T is an ideal of the primitive ring $F[z, S]$ and the class of all primitive rings is hereditary, it follows that T is primitive and so $T \in \mathcal{S}(\mathcal{J}) \subseteq \mathcal{S}(\mathcal{N}) \subseteq \mathcal{S}(\mathcal{L}) \subseteq \mathcal{S}(\beta)$. Now the result follows directly from Theorem

References

(1) N. Divinsky, Rings and radicals, Allen \& Unwin, London, 1965.
(2) H. France-Jackson, *-rings and their radicals, Quaest. Math. 8 (1985), no. 3, 231-239.
(3) B. J. Gardner and P. N. Stewart, Prime essential rings, Proc. Edinburgh Math. Soc. 34 (1991), 241-250.
(9) B. J. Gardner and R. Wiegandt, Radical theory of rings, Marcel Dekker, New York, 2004.
(3) H. J. Le Roux and G. A. P. Heyman, A question on the characterization of certain upper radical classes, Bollettino U. M. I. (5) 17-A (1980), 67-72.

